clj的题。图是假的别看

得先做这个[HAOI2015]按位或

本题如果还用[HAOI2015]按位或

的方法,2^50拜拜

但是思路一定是这样的:min-max容斥,考虑每个S的第一触及次数期望

这个题和[HAOI2015]按位或

一个不同之处是,每个区间的选择等概率随机!

这启发我们可以对许多状态一起统计!

发现,第一次触碰到S的概率和全是0的区间个数有关,符号和1的个数有关,为了方便转移还要记录最后一个1出现的位置

f[i][j][0/1]表示最后一个1的位置在i,全是0的区间个数为j,1的奇偶性是0/1

O(n^4)大力dp即可

T组数据,考虑统计答案

可以枚举最后一个1的位置pos,pos+1~n的全0的区间个数再计算

然后计算触及一次的期望次数tmp:1/[(C(n,2)+n)-cntzerointerval]

tmp*f[][][]*符号

贡献到ans里

或者更巧妙的做法是

钦定n+1位选择1

然后统计f[n+1][j][0/1]即可。当然多处理一个51,还要把0/1的状态奇偶性变过来。

总结:
抓住等概率的条件

抓住相同的S个数和方案

批量处理

喜大普奔

(置换批量处理的思想也是这样)

Endless Spin的更多相关文章

  1. HDU4624 Endless Spin 和 HAOI2015 按位或

    Endless Spin 给你一段长度为[1..n]的白色区间,每次随机的取一个子区间将这个区间涂黑,问整个区间被涂黑时需要的期望次数. n<=50 题解 显然是min-max容斥,但是n的范围 ...

  2. HDU4624 Endless Spin 【最大最小反演】【期望DP】

    题目分析: 题目是求$E(MAX_{i=1}^n(ai))$, 它等于$E(\sum_{s \subset S}{(-1)^{|s|-1}*min(s))} = \sum_{s \subset S}{ ...

  3. HDU4624 Endless Spin(概率&&dp)

    2013年多校的题目,那个时候不太懂怎么做,最近重新拾起来,看了一下出题人当初的解题报告,再结合一下各种情况的理解,终于知道整个大致的做法,这里具体写一下做法. 题意:给你一段长度为[1..n]的白色 ...

  4. 题解 hdu4624 Endless Spin

    题目链接 题目大意: 有长度为\(n\)的区间,每次随机选择一段(左右端点都是整数)染黑,问期望多少次全部染黑. \(n\leq 50\) 设\(n\)个随机变量\(t_1,...,t_n\).\(t ...

  5. [模板] 容斥原理: 二项式反演 / Stirling 反演 / min-max 容斥 / 子集反演 / 莫比乌斯反演

    //待更qwq 反演原理 二项式反演 若 \[g_i=\sum_{j=1}^i {\binom ij} f_j\] , 则有 \[ f_i=\sum_{j=1}^i (-1)^{i-j} {i \ch ...

  6. ZROI 暑期高端峰会 A班 Day1 组合计数

    AGC036F Square Constriants 一定有 \(l_i<p_i\le r_i\). 考虑朴素容斥,枚举每个数是 \(\le l_i\) 还是 \(\le r_i\).对于 \( ...

  7. 2019暑期金华集训 Day1 组合计数

    自闭集训 Day1 组合计数 T1 \(n\le 10\):直接暴力枚举. \(n\le 32\):meet in the middle,如果左边选了\(x\),右边选了\(y\)(且\(x+y\le ...

  8. spin.js

    $ajax提交,菊花加载的方式和位置: $.ajax({ type: "get", url: "http://www.xxx.com/test.html", b ...

  9. ros::spin() 和 ros::spinOnce() 区别及详解

    版权声明:本文为博主原创文章,转载请标明出处: http://www.cnblogs.com/liu-fa/p/5925381.html 博主提示:本文基于ROS Kinetic Kame,如有更(g ...

随机推荐

  1. Java+Selenium 3.x 实现Web自动化 - Maven打包TestNG,利用jenkins执行测试

    1. Jenkins本地执行测试 or 服务器端执行测试 测试代码计划通过jenkins执行时,通过网上查询各种教程,大多数为本地执行测试,由此可见,本地执行是大多数人的选择. 经过探讨,最终决定采用 ...

  2. halcon学习相关资料(转载)

    https://blog.csdn.net/maweifei/article/details/78162581 论坛.培训 halcon学习网:http://www.ihalcon.com/ 鸟叔机器 ...

  3. 2018百度之星开发者大赛-paddlepaddle学习

    前言 本次比赛赛题是进行人流密度的估计,因为之前看过很多人体姿态估计和目标检测的论文,隐约感觉到可以用到这次比赛上来,所以趁着现在时间比较多,赶紧报名参加了一下比赛,比赛规定用paddlepaddle ...

  4. Unity面试问题归总

    Unity面试问题归总 C#中Struct和Class的区别 Struct是Class的一种 A*寻路 https://blog.csdn.net/windcao/article/details/15 ...

  5. VMWARE网络配置内网与外网互ping

    新增网络适配器 设置自定义VMnet0 自动桥接 NAT的网络要配置网关 我们在CentOS中打开ifcfg-ens33文件(每个系统文件名都不同,但都是以ifcfg-ens33开头的文件),进行修改 ...

  6. 如何把node更新到最新的稳定版本

    先装n,再用n把node升级到最新稳定版 $ npm install -g n $ n stable

  7. USACO 1.2.3 Name That Number 命名那个数字(打开文件)

    Description 在威斯康辛州牛大农场经营者之中,都习惯于请会计部门用连续数字给母牛打上烙印.但是,母牛用手机时并没感到这个系统的便利,它们更喜欢用它们喜欢的名字来呼叫它们的同伴,而不是用像这个 ...

  8. 冲刺ing-3

    第三次Scrum冲刺 队员完成的任务 队员 完成任务 吴伟华 分配任务,燃尽图 蔺皓雯 编写博客,美化主界面 蔡晨旸 美化主界面 曾茜 主页面设计 鲁婧楠 服务器建构 杨池宇 服务器建构 成员遇到的问 ...

  9. python __call__ 函数

    __call__ Python中有一个有趣的语法,只要定义类型的时候,实现__call__函数,这个类型就成为可调用的. 换句话说,我们可以把这个类型的对象当作函数来使用,相当于 重载了括号运算符. ...

  10. TCP系列44—拥塞控制—7、SACK关闭的快速恢复

    ) return;    delta = ssthresh - in_flight;     prr_delivered += newly_acked_sacked; if (delta < 0 ...