[洛谷P1642]规划
题目大意:有一棵$n(n\leqslant100)$个点的树,每个点有两个权值$a,b$,要求选择一个$m$个点的连通块$S$,最大化$\dfrac{\sum\limits_{i\in S}a_i}{\sum\limits_{i\in S}b_i}$
题解:$01$分数规划,这一类的问题可以二分答案来做,二分这个值,然后把第$i$个点的权值变为$a_i-b_imid$,跑一遍树形$DP$,$f_{i,j}$表示以第$i$个点为根,连通块大小为$j$的最大值。看答案是否大于$0$,是则把答案变大,否则缩小答案
卡点:做背包时做反了,$01$背包变成完全背包,精度不够。
C++ Code:
#include <algorithm>
#include <cstdio>
#include <cstring>
#define maxn 111
const double eps = 1e-3; int head[maxn], cnt;
struct Edge {
int to, nxt;
} e[maxn << 1];
inline void addedge(int a, int b) {
e[++cnt] = (Edge) { b, head[a] }; head[a] = cnt;
e[++cnt] = (Edge) { a, head[b] }; head[b] = cnt;
} int n, m;
int a[maxn], b[maxn];
double w[maxn], f[maxn][maxn], res; inline void chkmax(double &a, double b) { if (a < b) a = b; }
void dfs(int u, int fa = 0) {
f[u][0] = 0, f[u][1] = w[u];
for (int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if (v != fa) {
dfs(v, u);
for (int j = m; j; --j)
for (int k = 0; k < j; ++k)
chkmax(f[u][j], f[u][j - k] + f[v][k]);
}
}
chkmax(res, f[u][m]);
}
int main() {
scanf("%d%d", &n, &m); m = n - m;
for (int i = 1; i <= n; ++i) scanf("%d", a + i);
for (int i = 1; i <= n; ++i) scanf("%d", b + i);
for (int i = 1, a, b; i < n; ++i) {
scanf("%d%d", &a, &b);
addedge(a, b);
}
double l = 0, r = 10000;
while (l + eps < r) {
const double mid = (l + r) / 2;
memset(f, 0xc2, sizeof f); res = **f;
for (int i = 1; i <= n; ++i) w[i] = a[i] - b[i] * mid;
dfs(1);
if (res >= 0) l = mid;
else r = mid;
}
printf("%.1lf\n", l);
return 0;
}
[洛谷P1642]规划的更多相关文章
- 分数规划模板(洛谷P4377 [USACO18OPEN]Talent Show)(分数规划,二分答案,背包)
分数规划是这样一个东西: 给定若干元素,每个元素有两个属性值\(a_i,b_i\),在满足题目要求的某些限制下选择若干元素并求出\(\frac{\sum a}{\sum b}\)的最大值. 如果没有限 ...
- 【POJ3621】【洛谷2868】Sightseeing Cows(分数规划)
[POJ3621][洛谷2868]Sightseeing Cows(分数规划) 题面 Vjudge 洛谷 大意: 在有向图图中选出一个环,使得这个环的点权\(/\)边权最大 题解 分数规划 二分答案之 ...
- Bzoj1486/洛谷P3199 最小圈(0/1分数规划+spfa)/(动态规划+结论)
题面 Bzoj 洛谷 题解(0/1分数规划+spfa) 考虑\(0/1\)分数规划,设当前枚举到的答案为\(ans\) 则我们要使(其中\(\forall b_i=1\)) \[ \frac{\sum ...
- Bzoj4753/洛谷P4432 [JSOI2016]最佳团体(0/1分数规划+树形DP)
题面 Bzoj 洛谷 题解 这种求比值最大就是\(0/1\)分数规划的一般模型. 这里用二分法来求解最大比值,接着考虑如何\(check\),这里很明显可以想到用树形背包\(check\),但是时间复 ...
- 【洛谷P2494】 [SDOI2011]保密(分数规划+最小割)
洛谷 题意: 题意好绕好绕...不想写了. 思路: 首先类似于分数规划做法,二分答案得到到每个点的最小危险度. 然后就是在一个二分图中,两边撤掉最少的点(相应代价为上面算出的危险度)及相应边,使得中间 ...
- 洛谷P2542 [AHOI2005]航线规划(LCT,双连通分量,并查集)
洛谷题目传送门 太弱了不会树剖,觉得LCT好写一些,就上LCT乱搞,当LCT维护双连通分量的练手题好了 正序删边是不好来维护连通性的,于是就像水管局长那样离线处理,逆序完成操作 显然,每个点可以代表一 ...
- 洛谷4951 地震 bzoj1816扑克牌 洛谷3199最小圈 / 01分数规划
洛谷4951 地震 #include<iostream> #include<cstdio> #include<algorithm> #define go(i,a,b ...
- 洛谷 P2542 [AHOI2005]航线规划(Link-cut-tree)
题面 洛谷 bzoj 题解 离线处理+LCT 有点像星球大战 我们可以倒着做,断边变成连边 我们可以把边变成一个点 连边时,如果两个点本身不联通,就\(val\)赋为\(1\),并连接这条边 如果,两 ...
- 关于三目运算符与if语句的效率与洛谷P2704题解
题目描述 司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队.一个N*M的地图由N行M列组成,地图的每一格可能是山地(用“H” 表示),也可能是平原(用“P”表示),如下图.在每一格平原地形上最 ...
随机推荐
- Lite OS学习之事件EVENT
1. Lite OS的事件EVENT,就是一个任务向另外一个任务通知事件的,不能数据传输.看下有的函数,实际比较复杂 2. 具体还是看编程,先全局结构体整个事件变量 /*事件控制结构体*/ EVENT ...
- VIN码识别/车架号识别独家支持云识别
VIN码(车架号)对于懂车的人来说并不陌生,不要小看这一串字符,从VIN码中可以读懂车辆的生产厂家.年代.车型.车身型式及代码.发动机代码及组装地点等信息. 一辆汽车的VIN码也是车辆的唯一身份证明, ...
- 学习HTML 第五节.简单交互 加个按钮
学习HTML 第五节.简单交互 也许你和我一样,对页面排版的兴趣小于网页交互,那么我们就先略过一些章节,直接先学一下简单交互. 前面点击图片打开链接的网址,已经是最简单的交互方式了,复杂的方式则需要用 ...
- centos7 安装rabbitmq3.4.1-1
安装环境:centos7版本 一.rabbitmq3.4.1-1安装环境配置: 安装erlang 1.创建Yum源 #创建yum源 sudo vi /etc/yum.repos.d/rabbitmq- ...
- css各种鼠标手型集合
比较齐全的鼠标手型css在国内的网站上是没搜到这么全的比如说哪个禁止的手型:鼠标往下移动即可看到效果: html代码如下: <h1>Cursors</h1> <div c ...
- 账号被锁无法ssh登陆
Account locked due to failed logins 方法一: 使用root用户登陆后执行: pam_tally2 --user=username --reset 方法二: user ...
- ICPC 沈阳 Problem C
题意 求n的全排列中将前k个数排序后最长公共子序列>=n-1的个数 思考 我们先把最后可能产生的结果找出来,再找有多少种排列能构成这些结果 设排列为s S like 1,2,3,...,n , ...
- C语言—栈
栈的操作:进栈和出栈 #include "stdafx.h" #include "stack.h" #define maxsize 20 typedef int ...
- 构建树形结构数据(全部构建,查找构建)C#版
摘要: 最近在做任务管理,任务可以无限派生子任务且没有数量限制,前端采用Easyui的Treegrid树形展示控件. 一.遇到的问题 获取全部任务拼接树形速度过慢(数据量大约在900条左右)且查询速度 ...
- 使用 Mesos 管理虚拟机
摘要 为了满足渲染.基因测序等计算密集型服务的需求,UCloud 推出了“计算工厂”产品,让用户可以快速创建大量的计算资源(虚拟机).该产品的背后,是一套基于 Mesos 的计算资源管理系统.本文简要 ...