Fleury算法
关于为什么不选桥
因为选桥之后会变成两个联通分支,这时由于可能产生的新联通分支不是孤立顶点,他俩都不联通了,那么也就绝对不可能“一笔画”走下来了
关于为什么可以选除桥之外的任意一条边走
本质原因是因为环与环嵌套后这俩环是没有内外之分的,所以说你任意选一条边本质是选择在哪个环上走,而你走任何一个环最后都是回到出发点,所以就随便走
其实欧拉图就是环套环或者环套环套环或者环套环套环套环或者...的图
#include<bits/stdc++.h>
using namespace std;
int mtx[][];
int deg[];
bool vis[];
bool dfs(int u,int v){
vis[u]=;
if(u==v)
return ;
for(int i=;i<;i++){
if(mtx[u][i]&&!vis[i]){
if(dfs(i,v))
return ;
}
}
return ;
}
bool not_bridge(int u,int v){ //判桥用dfs判的
memset(vis,,sizeof(vis));
mtx[u][v]=mtx[v][u]=;
int x=;
for(int i=;i<;i++){
if(mtx[u][i])
x++;
}
if(!x)
return ;
for(int i=;i<;i++){
if(mtx[u][i]){
if(dfs(i,v)){
mtx[u][v]=mtx[v][u]=;
return ;
}
}
}
mtx[u][v]=mtx[v][u]=;
return ;
}
int fa[];
int getfa(int x){ //并查集判一下是不是只有一个连通分量
while(x!=fa[x])
x=fa[x];
return x;
}
void joint(int u,int v){
fa[getfa(v)]=getfa(u);
}
int main(){
int n;
cin>>n;
char t[];
int minch='z'+-'A';
for(int i=;i<=;i++)
fa[i]=i;
for(int i=;i<=n;i++){
cin>>t;
int u=t[]-'A';
minch=min(minch,u);
int v=t[]-'A';
minch=min(minch,v);
if(getfa(u)!=getfa(v))
joint(u,v);
mtx[u][v]=;
deg[u]++;
mtx[v][u]=;
deg[v]++;
}
int prefa=-;
for(int i=;i<=;i++){
if(deg[i]){
if(prefa==-)
prefa=getfa(i);
else{
if(prefa!=getfa(i)){
puts("No Solution");
return ;
}
}
}
}
int odd=;
for(int i=;i<;i++){
if(deg[i]%){
odd++;
}
if(odd>){
puts("No Solution");
return ;
}
}
if(odd==){
minch='z'+-'A';
for(int i=;i<;i++){
if(deg[i]%){
minch=min(minch,i);
}
}
}
queue<int> Q;
Q.push(minch);
while(!Q.empty()){
int temp=Q.front();
Q.pop();
cout<<(char)(temp+'A');
for(int i=;i<;i++){
if(mtx[temp][i]&¬_bridge(temp,i)){
mtx[temp][i]=mtx[i][temp]=;
Q.push(i);
break;
}
}
}
return ;
}
//后来我学了hierholzer,强烈建议大家去学这个算法啊,实用多了
Fleury算法的更多相关文章
- 【欧拉回路】【Fleury算法】CDOJ1642 老当益壮, 宁移白首之心?
题意: 构造一个01串,使得满足以下条件: 1. 环状(即首尾相连) 2. 每一位取值为0或1 3. 长度是2^n 4. 对于每个(2^n个)位置,从其开始沿逆时针方向的连续的n位01串(包括自己) ...
- 【欧拉回路】【欧拉路径】【Fleury算法】CDOJ1634 记得小苹初见,两重心字罗衣
Fleury算法看这里 http://hihocoder.com/problemset/problem/1181 把每个点看成边,每个横纵坐标看成一个点,得到一个无向图. 如果新图中每个点的度都是偶数 ...
- Fleury算法 求欧拉回路
Fleury算法 #include <iostream> #include <cstdio> #include <cstring> #include <cma ...
- hiho欧拉路·二 --------- Fleury算法求欧拉路径
hiho欧拉路·二 分析: 小Ho:这种简单的谜题就交给我吧! 小Hi:真的没问题么? <10分钟过去> 小Ho:啊啊啊啊啊!搞不定啊!!!骨牌数量一多就乱了. 小Hi:哎,我就知道你会遇 ...
- CCF 第六次计算机职业认证 第四题 收货 stl动态存储和fleury算法的综合应用
问题描述 为了增加公司收入,F公司新开设了物流业务.由于F公司在业界的良好口碑,物流业务一开通即受到了消费者的欢迎,物流业务马上遍及了城市的每条街道.然而,F公司现在只安排了小明一个人负责所有街道的服 ...
- Fleury算法求欧拉路径
分析: 小Ho:这种简单的谜题就交给我吧! 小Hi:真的没问题么? <10分钟过去> 小Ho:啊啊啊啊啊!搞不定啊!!!骨牌数量一多就乱了. 小Hi:哎,我就知道你会遇到问题. 小Ho:小 ...
- 简单的Fleury算法模板
假设数据输入时采用如下的格式进行输入:首先输入顶点个数n和边数m,然后输入每条边,每条边的数据占一行,格式为:u,v,表示从顶点u到顶点v的一条有向边 这里把欧拉回路的路径输出了出来: 手写栈: #i ...
- HihoCoder1182 欧拉路(Fleury算法)
描述 小Hi和小Ho破解了一道又一道难题,终于来到了最后一关.只要打开眼前的宝箱就可以通关这个游戏了. 宝箱被一种奇怪的机关锁住: 这个机关是一个圆环,一共有2^N个区域,每个区域都可以改变颜色,在黑 ...
- HihoCoder1181欧拉路(Fleury算法求欧拉路径)
描述 在上一回中小Hi和小Ho控制着主角收集了分散在各个木桥上的道具,这些道具其实是一块一块骨牌. 主角继续往前走,面前出现了一座石桥,石桥的尽头有一道火焰墙,似乎无法通过. 小Hi注意到在桥头有一张 ...
随机推荐
- W-D-S-DDR
要把下载到nandflash里面的程序(大于8KB的时候)拷贝到链接地址,故要初始化DDR,才能够使用DDR. ??? 开发板上电后要初始化DRAC,以及DDR,然后把程序拷贝到50000000出运行 ...
- 常见的http response
200 //OK 400 //bad request 401 //Una ...
- 从Objective-C到Swift,你必须会的(四)DLog
调试的时候打断点太慢,所以输出log就是一个很好的选择了.断点,一行一行的按,太麻烦了.从log里一条一条的看,很快就可以找到到哪个函数的哪个地方这个代码就没执行了.这里不详细讨论调试技巧的事.不过大 ...
- 转载:oracle 自定义类型 type / create type
标签:type create oracle object record 一:Oracle中的类型有很多种,主要可以分为以下几类: 1.字符串类型.如:char.nchar.varchar2.nvarc ...
- Linux带有时间控制的多进程bash脚本
目标 以可控制的多进程执行,达到最大执行时长后停止脚本. 思路 1.产生fifo管道,并预填充n个值(与并发数相等) 2.记录脚本本身PID并启动计时器进程(计时终止后杀脚本本身PID) 3.并发执行 ...
- 企业IT架构转型之道 读书笔记-1.阿里巴巴集团中台战略引发的思考
前言 1.为什么选择看这本书 2.Supercell公司的开发模式 3.“烟囱式”系统建设模式弊端,及产生这种现象的原因 4.IT人员在企业信息中心的组织职能 一.为什么选择看这本书 多日没有更新博客 ...
- Lock 与Monitor 的用法与区别
1.lock的底层本身是Monitor来实现的,所以Monitor可以实现lock的所有功能 2.Monitor有TryEnter的功能,可以防止出现死锁的问题,lock没有. 3.Monitor.E ...
- [UWP开发]处理手机后退事件
众所周知,uwp程序是一套代码,可以run在不同的平台上.但是不同的设备肯定有其独特之处,所以针对这些独特之处,必须用“独特的代码”来处理. 所以微软提供了一系列的拓展类库来实现这种特殊处理. 如上图 ...
- linux的mount命令详解
最近在操作京东云服务器,挂在硬盘,分区等操作,重新温习了一下mount命令: linux下挂载(mount)光盘映像文档.移动硬盘.U盘.Windows和NFS网络共享. linux是个优秀的开放源码 ...
- 546. Remove Boxes
Given several boxes with different colors represented by different positive numbers. You may experie ...