关于为什么不选桥

因为选桥之后会变成两个联通分支,这时由于可能产生的新联通分支不是孤立顶点,他俩都不联通了,那么也就绝对不可能“一笔画”走下来了

关于为什么可以选除桥之外的任意一条边走

本质原因是因为环与环嵌套后这俩环是没有内外之分的,所以说你任意选一条边本质是选择在哪个环上走,而你走任何一个环最后都是回到出发点,所以就随便走

其实欧拉图就是环套环或者环套环套环或者环套环套环套环或者...的图

例题:洛谷P1341 无序字母对

#include<bits/stdc++.h>
using namespace std;
int mtx[][];
int deg[];
bool vis[];
bool dfs(int u,int v){
vis[u]=;
if(u==v)
return ;
for(int i=;i<;i++){
if(mtx[u][i]&&!vis[i]){
if(dfs(i,v))
return ;
}
}
return ;
}
bool not_bridge(int u,int v){ //判桥用dfs判的
memset(vis,,sizeof(vis));
mtx[u][v]=mtx[v][u]=;
int x=;
for(int i=;i<;i++){
if(mtx[u][i])
x++;
}
if(!x)
return ;
for(int i=;i<;i++){
if(mtx[u][i]){
if(dfs(i,v)){
mtx[u][v]=mtx[v][u]=;
return ;
}
}
}
mtx[u][v]=mtx[v][u]=;
return ;
}
int fa[];
int getfa(int x){ //并查集判一下是不是只有一个连通分量
while(x!=fa[x])
x=fa[x];
return x;
}
void joint(int u,int v){
fa[getfa(v)]=getfa(u);
}
int main(){
int n;
cin>>n;
char t[];
int minch='z'+-'A';
for(int i=;i<=;i++)
fa[i]=i;
for(int i=;i<=n;i++){
cin>>t;
int u=t[]-'A';
minch=min(minch,u);
int v=t[]-'A';
minch=min(minch,v);
if(getfa(u)!=getfa(v))
joint(u,v);
mtx[u][v]=;
deg[u]++;
mtx[v][u]=;
deg[v]++;
}
int prefa=-;
for(int i=;i<=;i++){
if(deg[i]){
if(prefa==-)
prefa=getfa(i);
else{
if(prefa!=getfa(i)){
puts("No Solution");
return ;
}
}
}
}
int odd=;
for(int i=;i<;i++){
if(deg[i]%){
odd++;
}
if(odd>){
puts("No Solution");
return ;
}
}
if(odd==){
minch='z'+-'A';
for(int i=;i<;i++){
if(deg[i]%){
minch=min(minch,i);
}
}
}
queue<int> Q;
Q.push(minch);
while(!Q.empty()){
int temp=Q.front();
Q.pop();
cout<<(char)(temp+'A');
for(int i=;i<;i++){
if(mtx[temp][i]&&not_bridge(temp,i)){
mtx[temp][i]=mtx[i][temp]=;
Q.push(i);
break;
}
}
}
return ;
}
//后来我学了hierholzer,强烈建议大家去学这个算法啊,实用多了

Fleury算法的更多相关文章

  1. 【欧拉回路】【Fleury算法】CDOJ1642 老当益壮, 宁移白首之心?

    题意: 构造一个01串,使得满足以下条件: 1. 环状(即首尾相连) 2. 每一位取值为0或1 3. 长度是2^n 4. 对于每个(2^n个)位置,从其开始沿逆时针方向的连续的n位01串(包括自己) ...

  2. 【欧拉回路】【欧拉路径】【Fleury算法】CDOJ1634 记得小苹初见,两重心字罗衣

    Fleury算法看这里 http://hihocoder.com/problemset/problem/1181 把每个点看成边,每个横纵坐标看成一个点,得到一个无向图. 如果新图中每个点的度都是偶数 ...

  3. Fleury算法 求欧拉回路

    Fleury算法 #include <iostream> #include <cstdio> #include <cstring> #include <cma ...

  4. hiho欧拉路·二 --------- Fleury算法求欧拉路径

    hiho欧拉路·二 分析: 小Ho:这种简单的谜题就交给我吧! 小Hi:真的没问题么? <10分钟过去> 小Ho:啊啊啊啊啊!搞不定啊!!!骨牌数量一多就乱了. 小Hi:哎,我就知道你会遇 ...

  5. CCF 第六次计算机职业认证 第四题 收货 stl动态存储和fleury算法的综合应用

    问题描述 为了增加公司收入,F公司新开设了物流业务.由于F公司在业界的良好口碑,物流业务一开通即受到了消费者的欢迎,物流业务马上遍及了城市的每条街道.然而,F公司现在只安排了小明一个人负责所有街道的服 ...

  6. Fleury算法求欧拉路径

    分析: 小Ho:这种简单的谜题就交给我吧! 小Hi:真的没问题么? <10分钟过去> 小Ho:啊啊啊啊啊!搞不定啊!!!骨牌数量一多就乱了. 小Hi:哎,我就知道你会遇到问题. 小Ho:小 ...

  7. 简单的Fleury算法模板

    假设数据输入时采用如下的格式进行输入:首先输入顶点个数n和边数m,然后输入每条边,每条边的数据占一行,格式为:u,v,表示从顶点u到顶点v的一条有向边 这里把欧拉回路的路径输出了出来: 手写栈: #i ...

  8. HihoCoder1182 欧拉路(Fleury算法)

    描述 小Hi和小Ho破解了一道又一道难题,终于来到了最后一关.只要打开眼前的宝箱就可以通关这个游戏了. 宝箱被一种奇怪的机关锁住: 这个机关是一个圆环,一共有2^N个区域,每个区域都可以改变颜色,在黑 ...

  9. HihoCoder1181欧拉路(Fleury算法求欧拉路径)

    描述 在上一回中小Hi和小Ho控制着主角收集了分散在各个木桥上的道具,这些道具其实是一块一块骨牌. 主角继续往前走,面前出现了一座石桥,石桥的尽头有一道火焰墙,似乎无法通过. 小Hi注意到在桥头有一张 ...

随机推荐

  1. Net下的 ORM框架介紹(转)

    http://www.cnblogs.com/zhaoyx/articles/1896638.html 在.NET平台下,关于数据持久层框架非常多,本文主要对如下几种做简要的介绍并推荐一些学习的资源: ...

  2. Linux执行YUM命令报错解决方案

    Loaded plugins: rhnplugin, security This system is not registered with RHN. RHN support will be disa ...

  3. 多个docker 挂载VOLUME的心得

    假如有一个mysql镜像 在Dockerfile中制定VOLUME /var/lib/mysql 那么当执行: docker run -d -e MYSQL_ROOT_PASSWORD=root -- ...

  4. Plupload 多实例上传 测试可用

    <style type="text/css"> .btn{-webkit-border-radius:3px;-moz-border-radius:3px;-ms-bo ...

  5. Register A Callback To Handle SQLITE_BUSY Errors(译)

    http://www.sqlite.org/c3ref/busy_handler.html留着自己看的. Register A Callback To Handle SQLITE_BUSY Error ...

  6. CWnd::MoveWindow 详解

    CWnd::MoveWindow void MoveWindow( int x, int y, int nWidth, int nHeight, BOOL bRepaint = TRUE ); voi ...

  7. onenote无法更新,提示无法流式传输、无法登陆等问题解答

    onenote无法更新,提示无法流式传输 修改DNS 4.2.2.1 和 4.2.2.2 onenote反复提示登录 升级到IE11

  8. struts2拦截器demo

    按照网上的一些资料配置的,期间也出现过几个错误. 其中有个错误,是关于struts.xml里面package配置的问题,因为里面的几个标签是有顺序的. 顺序是: result-types interc ...

  9. solr特点三: boost(改变默认打分排序)

    有时候默认的字段打分不能满足我们的需要,如我们想把关键词出现在标题中的优先显示. 测试于:Solr 4.5.1, Jdk 1.6.0_45, Tomcat 6.0.37 | CentOS 5.7 实现 ...

  10. Ceph 的基础数据结构 [Pool, Image, Snapshot, Clone]

    原文链接:http://www.cnblogs.com/sammyliu/p/4843812.html?utm_source=tuicool&utm_medium=referral 1 Poo ...