任意门:http://codeforces.com/contest/1118/problem/F1

F1. Tree Cutting (Easy Version)
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

You are given an undirected tree of nn vertices.

Some vertices are colored blue, some are colored red and some are uncolored. It is guaranteed that the tree contains at least one red vertex and at least one blue vertex.

You choose an edge and remove it from the tree. Tree falls apart into two connected components. Let's call an edge nice if neither of the resulting components contain vertices of both red and blue colors.

How many nice edges are there in the given tree?

Input

The first line contains a single integer nn (2≤n≤3⋅1052≤n≤3⋅105) — the number of vertices in the tree.

The second line contains nn integers a1,a2,…,ana1,a2,…,an (0≤ai≤20≤ai≤2) — the colors of the vertices. ai=1ai=1 means that vertex ii is colored red, ai=2ai=2 means that vertex ii is colored blue and ai=0ai=0 means that vertex ii is uncolored.

The ii-th of the next n−1n−1 lines contains two integers vivi and uiui (1≤vi,ui≤n1≤vi,ui≤n, vi≠uivi≠ui) — the edges of the tree. It is guaranteed that the given edges form a tree. It is guaranteed that the tree contains at least one red vertex and at least one blue vertex.

Output

Print a single integer — the number of nice edges in the given tree.

Examples
input

Copy
5
2 0 0 1 2
1 2
2 3
2 4
2 5
output

Copy
1
input

Copy
5
1 0 0 0 2
1 2
2 3
3 4
4 5
output

Copy
4
input

Copy
3
1 1 2
2 3
1 3
output

Copy
0
Note

Here is the tree from the first example:

The only nice edge is edge (2,4)(2,4). Removing it makes the tree fall apart into components {4}{4} and {1,2,3,5}{1,2,3,5}. The first component only includes a red vertex and the second component includes blue vertices and uncolored vertices.

Here is the tree from the second example:

Every edge is nice in it.

Here is the tree from the third example:

Edge (1,3)(1,3) splits the into components {1}{1} and {3,2}{3,2}, the latter one includes both red and blue vertex, thus the edge isn't nice. Edge (2,3)(2,3) splits the into components {1,3}{1,3} and {2}{2}, the former one includes both red and blue vertex, thus the edge also isn't nice. So the answer is 0.

题意概括:

给出一棵无向树,每个结点有一种颜色(1红 2蓝 0无色),如果删掉某条边可以把这棵树分成两部分刚好各部分只具有一种颜色,则这种边为nice边,求最多有多少条。

解题思路:

哈哈哈,一开始试着BFS暴力了一波,果然水不过。

正解DFS,很明显先预处理出 每个结点为跟的子树所具有的两种颜色的结点个数 dd[ x ][ 1 ]  && dd[ x ][ 2 ];

DFS一遍整棵树,判断当前边所分成的两部分是否满足条件,一部分就是预处理的子树部分,另一部分就是用树的根节点部分减去子树部分。

AC code:

 #include <bits/stdc++.h>
#define INF 0x3f3f3f3f
#define LL long long
using namespace std;
const int MAXN = 3e5+;
int color[MAXN];
int u[MAXN], v[MAXN];
int dd[MAXN][];
bool vis[MAXN];
int N, ans;
struct Edge
{
int v, nxt;
}edge[MAXN<<];
int head[MAXN], cnt; void init()
{
memset(head, -, sizeof(head));
cnt = ;
} void add(int from, int to)
{
edge[cnt].v = to;
edge[cnt].nxt = head[from];
head[from] = cnt++;
} void dfs1(int x, int fa)
{
int v;
if(color[x] == ) dd[x][]+=;
else if(color[x] == ) dd[x][]+=;
for(int i = head[x]; i != -; i = edge[i].nxt){
v = edge[i].v;
if(v == x || v == fa) continue;
dfs1(v, x);
dd[x][]+=dd[v][];
dd[x][]+=dd[v][];
}
} void dfs2(int x, int fa)
{
int v;
for(int i = head[x]; i != -; i = edge[i].nxt){
v = edge[i].v;
if(v == fa) continue;
if(dd[v][] == && (dd[][]-dd[v][]) == ){
// printf("u:%d v:%d\n", x, v);
ans++;
}
else if(dd[v][] == && (dd[][]-dd[v][]) == ){
// printf("u:%d v:%d\n", x, v);
ans++;
}
dfs2(v, x);
}
} int main()
{
init();
scanf("%d", &N);
for(int i = ; i <= N; i++){
scanf("%d", &color[i]);
}
for(int i = ; i < N; i++){
scanf("%d %d", &u[i], &v[i]);
add(u[i], v[i]);
add(v[i], u[i]);
} dfs1(, );
ans = ;
dfs2(, ); printf("%d\n", ans); return ;
}

Codeforces Round #540 (Div. 3) F1. Tree Cutting (Easy Version) 【DFS】的更多相关文章

  1. Codeforces Round #540 (Div. 3)--1118F1 - Tree Cutting (Easy Version)

    https://codeforces.com/contest/1118/problem/F1 #include<bits/stdc++.h> using namespace std; in ...

  2. Codeforces Round #527 (Div. 3) F. Tree with Maximum Cost 【DFS换根 || 树形dp】

    传送门:http://codeforces.com/contest/1092/problem/F F. Tree with Maximum Cost time limit per test 2 sec ...

  3. Codeforces Round #650 (Div. 3) F1. Flying Sort (Easy Version) (离散化,贪心)

    题意:有一组数,每次操作可以将某个数移到头部或者尾部,问最少操作多少次使得这组数非递减. 题解:先离散化将每个数映射为排序后所对应的位置,然后贪心,求最长连续子序列的长度,那么最少的操作次数一定为\( ...

  4. Codeforces Round #555 (Div. 3) C2. Increasing Subsequence (hard version)【模拟】

    一 题面 C2. Increasing Subsequence (hard version) 二 分析 需要思考清楚再写的一个题目,不能一看题目就上手,容易写错. 分以下几种情况: 1 左右两端数都小 ...

  5. Codeforces Round #533 (Div. 2) C. Ayoub and Lost Array 【dp】

    传送门:http://codeforces.com/contest/1105/problem/C C. Ayoub and Lost Array time limit per test 1 secon ...

  6. Codeforces Round #680 (Div. 2, based on Moscow Team Olympiad)【ABCD】

    比赛链接:https://codeforces.com/contest/1445 A. Array Rearrangment 题意 给定两个大小均为 \(n\) 的升序数组 \(a\) 和 \(b\) ...

  7. Codeforces Round #599 (Div. 2) B1. Character Swap (Easy Version) 水题

    B1. Character Swap (Easy Version) This problem is different from the hard version. In this version U ...

  8. Codeforces Round #263 (Div. 2) A. Appleman and Easy Task【地图型搜索/判断一个点四周‘o’的个数的奇偶】

    A. Appleman and Easy Task time limit per test 1 second memory limit per test 256 megabytes input sta ...

  9. Codeforces Round #599 (Div. 2) B1. Character Swap (Easy Version)

    This problem is different from the hard version. In this version Ujan makes exactly one exchange. Yo ...

随机推荐

  1. php数组操作,js数组操作

    俩语言一块儿学老混.整理一下. php: 1.声明: 1)$arr1 = array('key1' => 'value1', 'key2' => 'value2' ...);//关联数组, ...

  2. 结构型--代理模式(Proxy)

    一.代理模式是什么? 代理模式属于GOF23设计模式中结构型中的设计模式,通过代理对象来屏蔽(部分或者屏蔽)对真实对象的直接访问,下图为UML图: 在代理模式中组件包括:抽象角色接口.代理角色类.真实 ...

  3. svn 文件后面显示时间和提交人

    1.在eclipse中选择window-->preferences,然后选择下图中的位置,就可以显示你想要的东西的了,在此记下以备后用

  4. 关于iframe中使用fixed定位的一些问题

    先来看看position: fixed:的定义:生成绝对定位的元素,相对于浏览器窗口进行定位: 但是在iframe中使用fixed定位,实际上是相对于iframe窗口进行定位,原因在于iframe类似 ...

  5. Python入门-迭代器

    在说迭代器之前,首先来简单说一下函数名的运用以及闭包的概念和应用,有助于我们理解以后的知识. 一.函数名的运用 函数名是一个变量,但它是一个特殊的变量,与括号配合可以执行函数的变量. 1.函数名的内存 ...

  6. vue 数组重复,循环报错

    Vue.js默认不支持往数组中加入重复的数据.可以使用track-by="$index"来实现.

  7. 360浏览器内核控制标签meta说明

    浏览器内核控制标签meta说明 背景介绍 由于众所周知的原因,国内的主流浏览器都是双核浏览器:基于Webkit的内核用于常用网站的高速浏览,基于IE的内核主要用于部分网银.政府.办公系统等网站的正常使 ...

  8. lianxi

    package dududu; public class qiqiqi { public static void main(String[] args) { // TODO 自动生成的方法存根 ; ; ...

  9. Python爬虫--- 1.1请求库的安装与使用

    来说先说爬虫的原理:爬虫本质上是模拟人浏览信息的过程,只不过他通过计算机来达到快速抓取筛选信息的目的所以我们想要写一个爬虫,最基本的就是要将我们需要抓取信息的网页原原本本的抓取下来.这个时候就要用到请 ...

  10. 【JAVA语法】03Java-继承性

    继承的实现 继承的限制 子类对象的实例化 方法的重写 Super关键字 重写与重载的区别 final关键字 抽象类 接口 一.继承的实现 1.1 格式 class 子类 extends 父类 {} c ...