POJ1228:Grandpa's Estate——题解
http://poj.org/problem?id=1228
题目大意:给一个凸包,问是否为稳定凸包。
————————————————————————
稳定凸包的概念为:我任意添加一个点都不能使这个凸包得到扩充,这样的凸包为稳定凸包。
我们求完凸包后枚举边然后枚举有多少点在上面即可。
(网上的程序真的大部分是错的……)
#include<cstdio>
#include<queue>
#include<cctype>
#include<cstring>
#include<stack>
#include<cmath>
#include<algorithm>
using namespace std;
const int N=;
struct point{
int x;
int y;
}p[N],q[N];
int n,per[N],l;
inline point getmag(point a,point b){
point s;
s.x=b.x-a.x;s.y=b.y-a.y;
return s;
}
inline int multiX(point a,point b){
return a.x*b.y-b.x*a.y;
}
inline int dis(point a,point b){
return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);
}
inline bool cmp(int u,int v){
int det=multiX(getmag(p[],p[u]),getmag(p[],p[v]));
if(det!=)return det>;
return dis(p[],p[u])<dis(p[],p[v]);
}
void graham(){
int id=;
for(int i=;i<=n;i++){
if(p[i].x<p[id].x||(p[i].x==p[id].x&&p[i].y<p[id].y))id=i;
}
if(id!=)swap(p[],p[id]);
for(int i=;i<=n;i++)per[i]=i;
sort(per+,per+n+,cmp);
l=;
q[++l]=p[];
for(int i=;i<=n;i++){
int j=per[i];
while(l>=&&multiX(getmag(q[l-],p[j]),getmag(q[l-],q[l]))>=){
l--;
}
q[++l]=p[j];
}
return;
}
bool judge(){
for(int i=;i<=l;i++){
int sum=;
for(int j=;j<=n;j++){
if(multiX(getmag(q[i],p[j]),getmag(p[j],q[i%l+]))==)sum++;
}
if(sum<)return ;
}
bool flag=;
for(int i=;i<=l&&!flag;i++){
if(multiX(getmag(q[i-],q[i]),getmag(q[i],q[i%l+]))!=)flag=;
}
return flag;
}
int main(){
int t;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d%d",&p[i].x,&p[i].y);
graham();
if(judge())puts("YES");
else puts("NO");
}
return ;
}
POJ1228:Grandpa's Estate——题解的更多相关文章
- poj1228 Grandpa's Estate
地址:http://poj.org/problem?id=1228 题目: Grandpa's Estate Time Limit: 1000MS Memory Limit: 10000K Tot ...
- POJ1228 Grandpa's Estate 稳定凸包
POJ1228 转自http://www.cnblogs.com/xdruid/archive/2012/06/20/2555536.html 这道题算是很好的一道凸包的题吧,做完后会加深对凸包的 ...
- POJ 1228 Grandpa's Estate(凸包)
Grandpa's Estate Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 11289 Accepted: 3117 ...
- POJ1228:Grandpa's Estate(给定一些点,问是否可以确定一个凸包)
Being the only living descendant of his grandfather, Kamran the Believer inherited all of the grandp ...
- 【POJ】1228 Grandpa's Estate(凸包)
http://poj.org/problem?id=1228 随便看看就能发现,凸包上的每条边必须满足,有相邻的边和它斜率相同(即共线或凸包上每个点必须一定在三点共线上) 然后愉快敲完凸包+斜率判定, ...
- Grandpa's Estate - POJ 1228(稳定凸包)
刚开始看这个题目不知道是什么东东,后面看了大神的题解才知道是稳定凸包问题,什么是稳定凸包呢?所谓稳定就是判断能不能在原有凸包上加点,得到一个更大的凸包,并且这个凸包包含原有凸包上的所有点.知道了这个东 ...
- POJ 1228 Grandpa's Estate(凸包唯一性判断)
Description Being the only living descendant of his grandfather, Kamran the Believer inherited all o ...
- POJ 1228 Grandpa's Estate --深入理解凸包
题意: 判断凸包是否稳定. 解法: 稳定凸包每条边上至少有三个点. 这题就在于求凸包的细节了,求凸包有两种算法: 1.基于水平序的Andrew算法 2.基于极角序的Graham算法 两种算法都有一个类 ...
- 【POJ 1228】Grandpa's Estate 凸包
找到凸包后暴力枚举边进行$check$,注意凸包是一条线(或者说两条线)的情况要输出$NO$ #include<cmath> #include<cstdio> #include ...
随机推荐
- 搜索二维矩阵 II
描述 写出一个高效的算法来搜索m×n矩阵中的值,返回这个值出现的次数. 这个矩阵具有以下特性: 每行中的整数从左到右是排序的. 每一列的整数从上到下是排序的. 在每一行或每一列中没有重复的整数. 样例 ...
- JDK源码分析:Object.java
一. 序言 Object.java是一切类的基类,所以了解该类有一定的必要 二 .属性及方法分析 方法列表: private static native void registerNatives(); ...
- springMVC第二章
springMVC第二章 一.URL 映射 可以同时设置多个URL来访问某个控制器或方法.设置value属性: @RequestMapping(value= {"/grade",& ...
- C# 生成行和列
private DataTable GetListBind() { DataTable dt = new DataTable(); try { dt.Columns.Add("1" ...
- Python3 Tkinter-Radionbutton
1.创建单选按钮 from tkinter import * root=Tk() Radiobutton(root,text='b1').pack() Radiobutton(root,text='b ...
- Too many open files错误与解决方法
致前辈:该问题的解决思路给了我很大的启发,文章作者Lis, Linux资深技术专家. 问题现象:这是一个基于Java的web应用系统,在后台添加数据时提示无法添加,于是登陆服务器查看Tomcat 日志 ...
- 【转】jQuery最佳实践
上周,我整理了<jQuery设计思想>. 那篇文章是一篇入门教程,从设计思想的角度,讲解"怎么使用jQuery".今天的文章则是更进一步,讲解"如何用好jQu ...
- 团队作业7——第二次项目冲刺-Beta版本项目计划
上一个阶段的总结: 在Alpha阶段,我们小组已近完成了大部分的功能要求,小组的每一个成员都发挥了自己的用处.经过了这么久的磨合,小组的成员之间越来越默契,相信在接下来的合作中,我们的开发速度会越来越 ...
- LintCode-7-二叉树的序列化和反序列化
二叉树的序列化和反序列化 设计一个算法,并编写代码来序列化和反序列化二叉树.将树写入一个文件被称为"序列化",读取文件后重建同样的二叉树被称为"反序列化". 如 ...
- iOS开发GCD的简单使用
- (void)viewDidLoad { [super viewDidLoad]; // gcd 可以充分调用设备的 cpu 发挥最大性能,在 C 语言基础之上封装的 // dispatch_que ...