给一个序列,每次给一个长度l,问长度为l的区间中lcm最小的。

题解:因为ai<60,所以以某个点为左端点的区间的lcm只有最多60种的情况,而且相同的lcm区间的连续的。

所以就想到一个n*60*logn的做法,倍增找出每个点的区间lcm情况,然后修改答案……

1-60的lcm的积大于long long,只能把数拆开,然后比较时用log,结果才用这个数的质因数相乘。

问题在于一开始我对于每个点开个20的数组记录60内第几个质数的个数,这样每次常数就要再乘个20,然后就tle……

优化的方法是位运算,因为只会是2,3,5,7的次幂大于1次,单独记录,其他的只会是0次幂和1次幂。

最后作死的两个小错误:33不是质数……,用ln【60】数组记录log的值然而其中对n取对数……

#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
#define maxn 40000
#define mm 1000000007
#define LL long long
#define inf 100000000000
#define rep(i,l,r) for(int i=l;i<=r;i++)
#define dow(i,l,r) for(int i=r;i>=l;i--)
using namespace std; typedef struct {
int v1;
double v2;
}Big;
Big tree[maxn*];
double ln[maxn];
int f[maxn][],now;
int n,m,maxln,tot=;
LL ans1[maxn],ans2[maxn];
int pri[]={,,,,
,,,,
,,,,
,,,,
,,,,
,,,,}; double calc(int x)
{
double sum=;
rep(i,,tot)
if ((x>>i)&)
sum+=ln[pri[i]];
dow(i,,)
if ((x>>i)&) {
sum+=(i+)*ln[];
break;
}
if ((x>>)&) sum+=*ln[];
else
if ((x>>)&) sum+=*ln[];
else
if ((x>>)&) sum+=ln[]; if ((x>>)&) sum+=*ln[];
else
if ((x>>)&) sum+=ln[]; if ((x>>)&) sum+=*ln[];
else
if ((x>>)&) sum+=ln[]; return sum;
} LL answer(Big x)
{
LL sum=;
rep(i,,tot)
if ((x.v1>>i)&)
sum=sum*pri[i]%mm;
dow(i,,)
if ((x.v1>>i)&) {
sum=sum*pri[i]%mm;
break;
}
if ((x.v1>>)&) sum=sum*%mm;
else
if ((x.v1>>)&) sum=sum*%mm;
else
if ((x.v1>>)&) sum=sum*%mm; if ((x.v1>>)&) sum=sum*%mm;
else
if ((x.v1>>)&) sum=sum*%mm; if ((x.v1>>)&) sum=sum*%mm;
else
if ((x.v1>>)&) sum=sum*%mm; return sum;
} void build(int x,int l,int r)
{
tree[x].v2=inf;
if (l==r) return;
int mid=(l+r)>>;
build(x<<,l,mid);
build(x<<|,mid+,r);
} void change(int x,int l,int r,int ll,int rr,double z)
{
if (tree[x].v2<=z) return;
if (ll<=l && r<=rr) {
tree[x].v1=now;
tree[x].v2=z;
return;
}
int mid=(l+r)>>;
if (ll<=mid) change(x<<,l,mid,ll,rr,z);
if (rr>mid) change(x<<|,mid+,r,ll,rr,z);
} Big ask(int x,int l,int r,int y)
{
if (l==r) return tree[x];
int mid=(l+r)>>;
Big more;
if (y<=mid) more=ask(x<<,l,mid,y);
else more=ask(x<<|,mid+,r,y);
if (more.v2<tree[x].v2) return more;
return tree[x];
} int main()
{
rep(i,,maxn-) ln[i]=log(i);
int tt=;
while (scanf("%d %d",&n,&m)!=EOF) {
++tt;
rep(i,,n) {
f[i][]=;
int k;
scanf("%d",&k);
dow(j,,tot)
if (k%pri[j]==) k/=pri[j],f[i][]+=<<j;
}
maxln=floor(ln[n]/ln[])+;
rep(i,,maxln)
rep(j,,n+-(<<i))
f[j][i]=f[j][i-]|f[j+(<<(i-))][i-];
build(,,n);
rep(i,,n) {
int l=i;
now=;
while (l<=n) {
// printf("!!%d %d\n",now,f[l][0]);
now=now|f[l][];
int r=l;
dow(j,,maxln)
if (r-+(<<j)<=n && !(~((~f[r][j])|now)) ) r=r-+(<<j); change(,,n,l-i+,r-i+,calc(now));
l=r+;
}
} while (m--) {
int j;
scanf("%d",&j);
printf("%lld\n",answer(ask(,,n,j)));
}
}
return ;
}

这种区间答案连续的思想并不是第一次遇见了

【倍增】LCM QUERY的更多相关文章

  1. 刷题总结——Interval query(hdu4343倍增+贪心)

    题目: Problem Description This is a very simple question. There are N intervals in number axis, and M ...

  2. QTREE2 spoj 913. Query on a tree II 经典的倍增思想

    QTREE2 经典的倍增思想 题目: 给出一棵树,求: 1.两点之间距离. 2.从节点x到节点y最短路径上第k个节点的编号. 分析: 第一问的话,随便以一个节点为根,求得其他节点到根的距离,然后对于每 ...

  3. 【HDU 4343】Interval query(倍增)

    BUPT2017 wintertraining(15) #8D 题意 给你x轴上的N个线段,M次查询,每次问你[l,r]区间里最多有多少个不相交的线段.(0<N, M<=100000) 限 ...

  4. [SPOJ913]QTREE2 - Query on a tree II【倍增LCA】

    题目描述 [传送门] 题目大意 给一棵树,有两种操作: 求(u,v)路径的距离. 求以u为起点,v为终点的第k的节点. 分析 比较简单的倍增LCA模板题. 首先对于第一问,我们只需要预处理出根节点到各 ...

  5. HDU4343Interval query 倍增

    去博客园看该题解 题意 给定n个区间[a,b),都是左闭右开,有m次询问,每次询问你最多可以从n个区间中选出多少[L,R]的子区间,使得他们互不相交. n,m<=10^5. 区间下标<=1 ...

  6. SPOJ375 Query on a tree 【倍增,在线】

    题目链接[http://www.spoj.com/problems/QTREE/] 题意:给出一个包含N(N<=10000)节点的无根树,有多次询问,询问的方式有两种1.DIST  a b 求a ...

  7. Query on a tree II 倍增LCA

    You are given a tree (an undirected acyclic connected graph) with N nodes, and edges numbered 1, 2, ...

  8. spoj 913 Query on a tree II (倍增lca)

    Query on a tree II You are given a tree (an undirected acyclic connected graph) with N nodes, and ed ...

  9. HDU 4343 Interval query(贪心 + 倍增)

    题目链接  2012多校5 Problem D 题意  给定$n$个区间,数字范围在$[0, 10^{9}]$之间,保证左端点严格大于右端点. 然后有$m$个询问,每个询问也为一个区间,数字范围在$[ ...

随机推荐

  1. gdb 分析出错

    1 创建测试代码test.php <?php function test1(){ while(true){ sleep(1); } }echo getmypid() "\r\n&quo ...

  2. 基于Docker的UI自动化初探

    本文来自网易云社区 前言 一直以来,项目迭代的时间都是比较紧张的,开发加班加点coding,测试加班加点提bug.都说"时间像海绵里的水,挤挤总会有的"(当然这里的"挤挤 ...

  3. libevent学习四(Working with events)

    1.事件的分类 文件可写 文件可读 超时发生 信号发生 用户触发事件   2事件的生命周期        --非 persistent                                 ...

  4. katalon系列六:Katalon Studio Web UI关键字讲解

    在一个Test Case里,点左上Add-Web UI Keyword,可以添加一行新的命令. 像Click.setText.Delay这些最基本的,大家还是看看官方的API文档吧,望文知义,如果是纯 ...

  5. POSTMan 快速上手(一图带你玩 Postman )

    POSTMan 快速上手(一图带你玩 Postman ):

  6. Python数学运算入门把Python当作计算器

    让我们尝试一些简单的 Python 命令.启动解释器,等待界面中的提示符,>>> (这应该花不了多少时间). 3.1.1. 数字 解释器就像一个简单的计算器一样:你可以在里面输入一个 ...

  7. jetbrains系列激活

    没钱,只能DB了. 为了避免某些个人私自搭建服务器,以及自己搭建激活服务器,因此,决定使用破解包~~~. 注意:只要破解,就要屏蔽官方激活服务器:0.0.0.0 account.jetbrains.c ...

  8. Js全反选DataGrid

    // **************************************************************** // // function Trim(value) // -- ...

  9. java面试整理

    IO和NIO的区别 这是一个很常见的问题,如果单纯的只回答IO和NIO的区别,只能算及格.我个人觉得应该从以下几个方面回答: 1).IO简介, 2).TCP的三次握手,因为这也是两者的区别之一, 3) ...

  10. 为什么请求时,需要使用URLEncode做encode转码操作(转)

    什么要对url进行encode 发现现在几乎所有的网站都对url中的汉字和特殊的字符,进行了urlencode操作,也就是: http://hi.baidu.com/%BE%B2%D0%C4%C0%C ...