bzoj1690:[Usaco2007 Dec]奶牛的旅行(分数规划+spfa判负环)
PS:此题数组名皆引用:戳我
题目大意:有n个点m条有向边的图,边上有花费,点上有收益,点可以多次经过,但是收益不叠加,边也可以多次经过,但是费用叠加。求一个环使得收益和/花费和最大,输出这个比值。
显然这就是经典的分数规划题啊,就是最优比率环,那么就二分答案,将所有边(u,v)的边权改为【v的点权-(u,v)原边权*mid】(因为d[i]=a[i]-L*b[i]),然后判一下是否有正环,有的话就说明有更优的答案(F(L)=sigma(a[i]*x[i])-L*sigma(b[i]*x[i])>0即sigma(a[i]*x[i])/sigma(b[i]*x[i])>L),缩小范围继续二分。判正环有够别扭的,那就全部改成相反数然后判负环吧233333
代码如下:
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<queue>
using namespace std;
struct zs{int too,pre;double dis;}e[];
struct poi{int pos;double dis;};
priority_queue<poi>q;
bool operator <(poi a,poi b){return a.dis-b.dis>1e-;}
int n,m,x,y,now,tot,num[],last[];
bool v[];
double l,r,mid,dis[],fun[];
bool spfa(int x)
{
for(int i=;i<=n;i++)dis[i]=;v[x]=true;q.push((poi){,});dis[]=;
while(!q.empty())
{
int i,too;
for(i=last[now=q.top().pos],too=e[i].too,q.pop();i;i=e[i].pre,too=e[i].too)
{
double dist=e[i].dis*mid-fun[too];
if(dis[too]-dis[now]-dist>1e-)
{
dis[too]=dis[now]+dist;
if(!v[too])v[too]=,q.push((poi){too,e[i].dis}),num[too]++;
if(num[too]>)return ;
}
}
v[now]=;
}
return ;
}
int main()
{
scanf("%d %d",&n,&m);
for(int i=;i<=n;i++)scanf("%lf",&fun[i]);
for(int i=;i<=m;i++)
{
scanf("%d %d %lf",&x,&y,&e[++tot].dis);
e[tot].too=y;e[tot].pre=last[x];last[x]=tot;
}
l=;r=;
while(r-l>1e-)
{
memset(v,,sizeof(v));
memset(num,,sizeof(num));
mid=(l+r)/;
if(spfa())l=mid;
else r=mid;
}
printf("%.2lf",l);
}
bzoj1690:[Usaco2007 Dec]奶牛的旅行(分数规划+spfa判负环)的更多相关文章
- bzoj 1690: [Usaco2007 Dec]奶牛的旅行——分数规划+spfa判负环
Description 作为对奶牛们辛勤工作的回报,Farmer John决定带她们去附近的大城市玩一天.旅行的前夜,奶牛们在兴奋地讨论如何最好地享受这难得的闲暇. 很幸运地,奶牛们找到了一张详细的城 ...
- 【bzoj1690】[Usaco2007 Dec]奶牛的旅行 分数规划+Spfa
题目描述 作为对奶牛们辛勤工作的回报,Farmer John决定带她们去附近的大城市玩一天.旅行的前夜,奶牛们在兴奋地讨论如何最好地享受这难得的闲暇. 很幸运地,奶牛们找到了一张详细的城市地图,上面标 ...
- [HNOI2009]最小圈 分数规划 spfa判负环
[HNOI2009]最小圈 分数规划 spfa判负环 题面 思路难,代码简单. 题目求圈上最小平均值,问题可看为一个0/1规划问题,每个边有\(a[i],b[i]\)两个属性,\(a[i]=w(u,v ...
- 2018.09.24 bzoj1486: [HNOI2009]最小圈(01分数规划+spfa判负环)
传送门 答案只保留了6位小数WA了两次233. 这就是一个简单的01分数规划. 直接二分答案,根据图中有没有负环存在进行调整. 注意二分边界. 另外dfs版spfa判负环真心快很多. 代码: #inc ...
- [P1768]天路(分数规划+SPFA判负环)
题目描述 “那是一条神奇的天路诶~,把第一个神犇送上天堂~”,XDM先生唱着这首“亲切”的歌曲,一道猥琐题目的灵感在脑中出现了. 和C_SUNSHINE大神商量后,这道猥琐的题目终于出现在本次试题上了 ...
- bzoj3597[Scoi2014]方伯伯运椰子 01分数规划+spfa判负环
3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec Memory Limit: 64 MBSubmit: 594 Solved: 360[Submit][Statu ...
- [HNOI2009]最小圈(分数规划+SPFA判负环)
题解:求环长比环边个数的最小值,即求min{Σw[i]/|S|},其中i∈S.这题一眼二分,然后可以把边的个数进行转化,假设存在Σw[i]/|S|<=k,则Σw[i]-k|S|<=0,即Σ ...
- BZOJ1690 Usaco2007 Dec 奶牛的旅行 【01分数规划】
BZOJ1690 Usaco2007 Dec 奶牛的旅行 题目描述 作为对奶牛们辛勤工作的回报,Farmer John决定带她们去附近的大城市玩一天.旅行的前夜,奶牛们在兴奋地讨论如何最好地享受这难得 ...
- BZOJ1690: [Usaco2007 Dec]奶牛的旅行
1690: [Usaco2007 Dec]奶牛的旅行 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 552 Solved: 286[Submit][St ...
随机推荐
- hdu5305 Friends(dfs,多校题)
Friends Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Sub ...
- [Clr via C#读书笔记]Cp10属性
Cp10属性 属性的本质就是方法,只是看起来像字段罢了: 无参属性 就是一般属性: 字段一般要private,然后通过设置访问方法-访问器来访问:属性是方法语法变种:getset不一定要访问支持字段: ...
- Intro to Probabilistic Model
概率论复习 概率(Probability) 频率学派(Frequentist):由大量试验得到的期望频率(致命缺陷:有些事情无法大量试验,例如一封邮件是垃圾邮件的概率,雷达探测的物体是一枚导弹的概率) ...
- avalonJS入门
前端神器avalonJS入门(一) posted @ 2014-10-31 17:44 vajoy 阅读(8759) 评论(42) 编辑 收藏 avalonJS是司徒正美开发和维护的前端mvvm框 ...
- location 匹配规则 (NGINX)
转:https://moonbingbing.gitbooks.io/openresty-best-practices/ngx/nginx_local_pcre.html location 匹配规则 ...
- 福大软工1816:Alpha(7/10)
Alpha 冲刺 (7/10) 队名:Jarvis For Chat 组长博客链接 本次作业链接 团队部分 团队燃尽图 工作情况汇报 张扬(组长) 过去两天完成了哪些任务: 文字/口头描述: 1.完成 ...
- 访问需要HTTP Basic Authentication认证的资源的各种开发语言的实现
什么是HTTP Basic Authentication?直接看http://en.wikipedia.org/wiki/Basic_authentication_scheme吧. 在你访问一个需要H ...
- 3ds Max学习日记(一)
暑假闲来无事学习一发3ds Max.为啥要学这玩意?貌似可以用这东西三维建模.暑期生产实习选了一个搞vr的导师,貌似他忙得很,无奈只好先自己研究一下啦~ vr神马的还是有点意思的,虽然自己仅仅 ...
- SVM之核函数
SVM之问题形式化 SVM之对偶问题 >>>SVM之核函数 SVM之解决线性不可分 写在SVM之前——凸优化与对偶问题 上一篇SVM之对偶问题中讨论到,SVM最终形式化为以下优化问题 ...
- 基于gulp的前端自动化开发构建
就前端的发展而言会越来越朝着后端的标准化靠近,后端的工程化以及模块化都很成熟.基于这样一个思路,开始探索如何优化目前的开发流程.而使用的工具就是gulp. 个人觉得gulp比较webpack更为简单实 ...