http://www.lydsy.com/JudgeOnline/problem.php?id=1043

Description

  有n个圆盘从天而降,后面落下的可以盖住前面的。求最后形成的封闭区域的周长。看下面这副图, 所有的红
色线条的总长度即为所求.

Input

  第一行为1个整数n,N<=1000
接下来n行每行3个实数,ri,xi,yi,表示下落时第i个圆盘的半径和圆心坐标.

Output

  最后的周长,保留三位小数

Sample Input

2
1 0 0
1 1 0

Sample Output

10.472

————————————————————————————————

代码借(抄)鉴(袭)于:http://blog.csdn.net/Vmurder/article/details/46564199

首先我们通过枚举判断两圆的关系:后全覆盖先,先全覆盖后,后和先相交,后和先相离。

显然2和4是没有影响的,而1相当于将先圆干掉了(因为它不再对答案有贡献了)

所以重点在3情况上。

我们弧长公式有:L=角(弧度制)*半径(R)。

所以我们可以用弧度制来表示当前圆被覆盖的部分,即可求出弧长。

基本上高中数学知识即可解决,这里配一张图:

我们这里让a圆覆盖b圆,求b被覆盖的圆心角区间。

我们首先发现图中所有的线段长度都能求出来。

我们设∠EBA为alpha,显然△ADB和△ACB全等,则设∠DBA=∠CBA=beta

那么

alpha=arctan(AE/EB)

beta=arccos((BD*BD+BA*BA-DA*DA)/(2*BD*BA))=arccos((rb*rb+dis*dis-ra*ra)/(2*rb*dis))

//余弦定理

那么∠DBE=alpha-beta,∠EBC=alpha+beta

(这里可以发现我们圆心角的0度被我们定义在了左边,和常识不同请注意)

我们将圆心角控制在[-180度,180度],所以一旦超过了这个区间我们就要对其进行修改。

修改操作详见gai函数。

#include<cstdio>
#include<queue>
#include<cctype>
#include<cstring>
#include<stack>
#include<cmath>
#include<algorithm>
using namespace std;
typedef double dl;
const int N=;
const dl poi=acos(-1.0);
struct circle{
dl r;
dl x;
dl y;
}p[N];
struct line{
dl l;
dl r;
}seg[N][*N];
int n,cnt[N];
bool die[N];
inline dl dis(circle a,circle b){
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
inline int inc(circle a,circle b){
dl d=dis(a,b);
if(a.r+b.r<d)return ;//两圆相离
if(a.r>b.r&&a.r-b.r>d)return -;//a覆盖b
if(b.r>a.r&&b.r-a.r>d)return ;//b覆盖a
return ;//两圆相交
}
inline void getinc(circle a,circle b,dl &i,dl &j){//a覆盖b
double alpha=atan2((b.y-a.y),(b.x-a.x));
dl d=dis(a,b);
double beta=acos((b.r*b.r+d*d-a.r*a.r)/(*b.r*d));
i=alpha-beta;
j=alpha+beta;
return;
}
inline bool gai(line &a){
if(a.r>poi){
a.r-=*poi;
return ;
}
if(a.l<-poi){
a.l+=*poi;
return ;
}
return ;
}
bool cmp(line a,line b){
return a.l<b.l;
}
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%lf%lf%lf",&p[i].r,&p[i].x,&p[i].y);
for(int j=;j<i;j++){
if(die[j])continue;
int k=inc(p[i],p[j]);
if(!k)continue;
if(k==-){
die[j]=;
continue;
}
cnt[j]++;
getinc(p[i],p[j],seg[j][cnt[j]].l,seg[j][cnt[j]].r);
if(gai(seg[j][cnt[j]])){
cnt[j]++;
seg[j][cnt[j]].l=-poi;
seg[j][cnt[j]].r=seg[j][cnt[j]-].r;
seg[j][cnt[j]-].r=poi;
}
}
}
dl ans=;
for(int i=;i<=n;i++){
if(!die[i]){
dl re=*poi,L,R;
if(cnt[i]){
sort(seg[i]+,seg[i]+cnt[i]+,cmp);
L=seg[i][].l;R=seg[i][].r;
for(int j=;j<=cnt[i];j++){
if(seg[i][j].l>R){
re-=R-L;
L=seg[i][j].l;
R=seg[i][j].r;
}else{
R=max(R,seg[i][j].r);
}
}
re-=R-L;
}
ans+=re*p[i].r;
}
}
printf("%.3lf\n",ans);
return ;
}

BZOJ1043:[HAOI2008]下落的圆盘——题解(配图片)的更多相关文章

  1. bzoj1043[HAOI2008]下落的圆盘 计算几何

    1043: [HAOI2008]下落的圆盘 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1598  Solved: 676[Submit][Stat ...

  2. 【计算几何】bzoj1043 [HAOI2008]下落的圆盘

    n^2枚举圆盘,用两圆圆心的向量的极角+余弦定理求某个圆覆盖了该圆的哪一段区间(用弧度表示),最后求个区间并. 注意--精度--最好再累计区间的时候,把每个区间的长度减去EPS,防止最后覆盖的总区间超 ...

  3. bzoj1043 [HAOI2008]下落的圆盘

    Description 有n个圆盘从天而降,后面落下的可以盖住前面的.求最后形成的封闭区域的周长.看下面这副图, 所有的红色线条的总长度即为所求. Input 第一行为1个整数n,N<=1000 ...

  4. BZOJ-1043 [HAOI2008]下落的圆盘

    几何题... 先把所有圆储存起来,然后对于每个圆我们求得之后放下的圆挡住了的部分,求个并集,并把没被挡到的周长加进答案. #include <cstdlib> #include <c ...

  5. 【BZOJ1043】[HAOI2008]下落的圆盘 几何

    [BZOJ1043][HAOI2008]下落的圆盘 Description 有n个圆盘从天而降,后面落下的可以盖住前面的.求最后形成的封闭区域的周长.看下面这副图, 所有的红色线条的总长度即为所求.  ...

  6. 【bzoj1043】下落的圆盘

    [bzoj1043]下落的圆盘 题意 有n个圆盘从天而降,后面落下的可以盖住前面的.求最后形成的封闭区域的周长.看下面这副图, 所有的红色线条的总长度即为所求. \(1\leq n\leq 1000\ ...

  7. 【BZOJ1043】下落的圆盘 [计算几何]

    下落的圆盘 Time Limit: 10 Sec  Memory Limit: 162 MB[Submit][Status][Discuss] Description 有n个圆盘从天而降,后面落下的可 ...

  8. luogu P2510 [HAOI2008]下落的圆盘

    LINK:下落的圆盘 计算几何.n个圆在平面上编号大的圆将编号小的圆覆盖求最后所有没有被覆盖的圆的边缘的总长度. 在做这道题之前有几个前置知识. 极坐标系:在平面内 由极点 极轴 和 极径组成的坐标系 ...

  9. 【bzoj1043】[HAOI2008]下落的圆盘 计算几何

    题目描述 有n个圆盘从天而降,后面落下的可以盖住前面的.求最后形成的封闭区域的周长.看下面这副图, 所有的红色线条的总长度即为所求. 输入 第一行为1个整数n,N<=1000接下来n行每行3个实 ...

随机推荐

  1. ping telnet 指令

    Ping 一 作用 ping能够辨别网络功能的某些状态,这些状态是日常网络故障诊断的基础.Ping能够识别连接的二进制状态(看是否连通).Ping命令通过过向计算机发送ICMP回应报文并监听回应报文的 ...

  2. 使用postman实现半自动化

    前些日子项目要上一个活动,其中有一个功能是幸运大转盘,用户可以随机抽奖,奖品有多种满减券及多种商品,但是奖品都是有抽中概率的,且有的商品还设置有库存,所以测试点便是测试抽奖的概率和库存.接下来拆分一下 ...

  3. Linux命令应用大词典-第4章 目录和文件操作

    4.1 pwd:显示(打印)当前工作目录路径 4.2 cd:更改工作目录路径 4.3 ls: 列出目录和文件信息: 4.4 dir:列出目录或文件信息: 4.5 dirs:显示目录列表: 4.6 to ...

  4. 【转】UTF8字符串转换为汉字 c#,转自游戏开发主席

    using System; /// <summary> /// UTF8字符串转换为汉字用的类 /// 转换如"\\u8d35"之类的字符串为对应的汉字 /// < ...

  5. Hbase restFul API

    获取hbase版本 curl -vi -X GET -H "Accept: text/xml" http://10.8.4.46:20550/version/cluster1.2. ...

  6. springMVC怎么改变form的提交方式为put或者delete

    想着练习一下创建restful风格的网站呢,结果发现在jsp页面上并不能灵活使用put和delete提交方式.下面我的解决办法 一. form 只支持post和get两种提交方式,只支持get提交方式 ...

  7. Python3 Tkinter-Place

    1.绝对坐标 from tkinter import * root=Tk() lb=Label(root,text='hello Place') lb.place(x=0,y=0,anchor=NW) ...

  8. FZU 1844 Earthquake Damage(最大流最小割)

    Problem Description Open Source Tools help earthquake researchers stay a step ahead. Many geological ...

  9. fragment的介绍与使用

    稍稍摘录一段Fragment.java中的说明文档. /** * A Fragment is a piece of an application's user interface or behavio ...

  10. Thunder团队第五周 - Scrum会议2

    Scrum会议2 小组名称:Thunder 项目名称:i阅app Scrum Master:胡佑蓉 工作照片: 参会成员: 王航:http://www.cnblogs.com/wangh013/ 李传 ...