Floyd思想可用下式描述:
A-1[i][j]=gm[i][j]
A(k+1)[i][j]=min{Ak[i][j],Ak[i][k+1]+Ak[K+1][j]}    -1<=k<=n-2
该式是一个迭代公式,Ak表示已考虑顶点0,1,.......,k等k+1个顶点之后各顶点之间的最短路径,即Ak[i][j]表示由Vi到Vj已考虑顶点0,1,.......,k等k+1个顶点的最短路径;在此基础上再考虑顶点k+1并求出各顶点在考虑了顶点k+1之后的最短路径,即得到Ak+1.每迭代一次,在从vi到vj的最短路径上就多考虑了一个顶点;经过n次迭代后所得到的A(n-1)[i][j]值,就是考虑所有顶点后从Vi到Vj的最短路径,也就是最终的解。
若Ak[i][j]已经求出,且顶点i到顶点j的路径长度为Ak[i][j],顶点i到顶点k+1的路径长度为Ak[i][k+1],顶点k+1到顶点j的路径长度为Ak[K+1][j],现在考虑顶点k+1,如果Ak[i][K+1]+Ak[k+1][j]<Ak[i][j],则将原来顶点i到顶点j的路径改为:顶点i到顶点k+1,再由顶点k+1到顶点j;对应的路径长度为:A(k+1)[i][j]=Ak[i][k+1]+Ak[k+1][j];否则无需修改顶点i到顶点j的路径.
参考代码:
 #include<stdio.h>
#define MAXSIZE 6//带权有向图中顶点的个数
#define INF 32767 void Ppath(int path[][MAXSIZE],int i,int j)//前向递归查找路径上的顶点,MAXSIZE为常数
{
int k;
k=path[i][j];
if(k!=-)
{
Ppath(path,i,k);//找顶点vi的前一个顶点vk
printf("%d->",k);//输出顶点vk序号k
Ppath(path,k,j);//找顶点vk的前一个顶点vj
}
} void Dispath(int A[][MAXSIZE],int path[][MAXSIZE],int n)//输出最短路径的函数
{
int i,j;
for(i=;i<n;i++)
for(j=;j<n;j++)
if(A[i][j]==INF)//INF为一极大常数
{
if(i!=j)
printf("从%d到%d没有路径!\n",i,j);
}
else//从vi到vj有最短路径
{
printf("从%d到%d的路径长度:%d,路径:",i,j,A[i][j]);
printf("%d->",i);//输出路径上的起点序号i
Ppath(path,i,j);//输出路径上的各中间点序号
printf("%d\n",j);//输出路径的终点序号j
}
} void Floyd(int gm[][MAXSIZE],int n)//Floyd算法
{
int A[MAXSIZE][MAXSIZE],path[MAXSIZE][MAXSIZE];
int i,j,k;
for(i=;i<n;i++)
for(j=;j<n;j++)
{A[i][j]=gm[i][j];//A-1[i][j]置初值
path[i][j]=-;//-1表示初始时最短路径不经过中间顶点
}
for(k=;k<n;k++)//按顶点编号k递增的次序查找当前顶点之间的最短路径长度
for(i=;i<n;i++)
for(j=;j<n;j++)
if(A[i][j]>A[i][k]+A[k][j])
{A[i][j]=A[i][k]+A[k][j];//从vi到vj经过vk时路径长度更短
path[i][j]=k;//记录中间顶点Vk的编号
}
Dispath(gm,path,n);//输出最短路径
} void main()
{
int g[MAXSIZE][MAXSIZE]={{INF,,,INF,INF,INF},{,INF,INF,INF,,},{INF,,INF,INF,INF,},
{INF,INF,INF,INF,INF,INF},{INF,INF,INF,,INF,INF},{INF,INF,INF,,,INF}};
Floyd(g,MAXSIZE);
}

输出结果:

每一对顶点间最短路径的Floyd算法的更多相关文章

  1. 弗洛伊德算法Floyed(求各顶点间最短路径):可打印最短路径

    #include <iostream> #include <string> #include <iomanip> using namespace std; #def ...

  2. 最短路径 - 弗洛伊德(Floyd)算法

    为了能讲明白弗洛伊德(Floyd)算法的主要思想,我们先来看最简单的案例.图7-7-12的左图是一个简单的3个顶点的连通网图. 我们先定义两个二维数组D[3][3]和P[3][3], D代表顶点与顶点 ...

  3. 图的最短路径---弗洛伊德(Floyd)算法浅析

    算法介绍 和Dijkstra算法一样,Floyd算法也是为了解决寻找给定的加权图中顶点间最短路径的算法.不同的是,Floyd可以用来解决"多源最短路径"的问题. 算法思路 算法需要 ...

  4. 数据结构与算法--最短路径之Floyd算法

    数据结构与算法--最短路径之Floyd算法 我们知道Dijkstra算法只能解决单源最短路径问题,且要求边上的权重都是非负的.有没有办法解决任意起点到任意顶点的最短路径问题呢?如果用Dijkstra算 ...

  5. 最短路径之Floyd算法

    Floyd算法又称弗洛伊德算法,也叫做Floyd's algorithm,Roy–Warshall algorithm,Roy–Floyd algorithm, WFI algorithm. Floy ...

  6. 最短路径---Dijkstra/Floyd算法

    1.Dijkstra算法基础: 算法过程比prim算法稍微多一点步骤,但思想确实巧妙也是贪心,目的是求某个源点到目的点的最短距离,总的来说dijkstra也就是求某个源点到目的点的最短路,求解的过程也 ...

  7. 最短路径问题-Floyd算法

    概念 最短路径也是图的一个应用,即寻找图中某两个顶点的最短路径长度. 实际应用:例如确定某两个城市间的坐火车最短行车路线长度等. Floyd algorithm 中文名就是弗洛伊德算法. 算法思路:用 ...

  8. 26最短路径之Floyd算法

    Floyd算法 思想:将n个顶点的图G“分成”很多子图 每对顶点vi和vj对应子图Gij(i=0,1,…,n-1和j=0,1,…,n-1) 每对顶点vi和vj都保留一条顶点限于子图Gij中的最短路径P ...

  9. 最短路径问题——floyd算法

    floyd算法和之前讲的bellman算法.dijkstra算法最大的不同在于它所处理的终于不再是单源问题了,floyd可以解决任何点到点之间的最短路径问题,个人觉得floyd是最简单最好用的一种算法 ...

随机推荐

  1. HDU 4303 树形DP

    Hourai Jeweled Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 163840/163840 K (Java/Others) ...

  2. C语言函数的变参实用与分析

    实现变参传递的关键是: 传入参数在内存中是连续分布的. #define va_list void* #define va_arg(arg, type) *(type*)arg; arg = (char ...

  3. 2015/9/20 Python基础(16):类和实例

    面向对象编程编程的发展已经从简单控制流中按步的指令序列进入到更有组织的方式中,依靠代码块可以形成命名子程序和完成既定的功能.结构化的或过程性编程可以让我们把程序组织成逻辑快,以便重复或重用.创造程序的 ...

  4. [洛谷P3629] [APIO2010]巡逻

    洛谷题目链接:[APIO2010]巡逻 题目描述 在一个地区中有 n 个村庄,编号为 1, 2, ..., n.有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以 ...

  5. html 制作静态页面新知识

    1.在区块线边框添加一条水平线 例如:<div  style:"height :300px;width:800px;border-bottom: solid 1px orange ;& ...

  6. 修改Maven仓库地址

    在%USERPROFILE%\.m2\settings.xml例如:C:\Users\LongShu\.m2\settings.xml 可以自定义Maven的一些参数, 复制%M2_HOME%\con ...

  7. 【51NOD】1096 距离之和最小

    [算法]数学 [题解] 其实就是求中位数,奇数个点就是最中间的点,偶数个点就是最中间两个点和它们之间的区域皆可(所以偶数不必取到两点正中央,取两点任意一点即可). 我们可以想象现在x轴上有n个点,我们 ...

  8. JS语句循环(100以内奇偶数、100以内与7先关的数、100以内整数的和、10以内阶乘、乘法口诀、篮球弹起高度、64格子放东西)

    3.循环 循环是操作某一个功能(执行某段代码). ①循环四要素: a 循环初始值 b 循环的条件 c 循环状态 d 循环体 ②for循环 a 穷举:把所有的可能性的都一一列出来. b 迭代:每次循环都 ...

  9. 彻底解决_OBJC_CLASS_$_某文件名", referenced from:问题

    最近在使用静态库时,总是出现这个问题.下面总结一下我得解决方法: 1. .m文件没有导入    在Build Phases里的Compile Sources 中添加报错的文件 2. .framewor ...

  10. Python switch-case语句的实现 -- 字典模拟实现

    static void print_asru_status(int status, char *label) { char *msg = NULL; switch (status) { : msg = ...