[bzoj2433][Noi2011]智能车比赛
【题目链接】
【题目大意】
题目已经讲得很清楚了
防剧透
防剧透
防剧透
防剧透
防剧透
防剧透
防剧透
防剧透
防剧透
【解题思路】
首先可以发现一个性质:路径的转折点只能在矩形的顶点上。这个可以用任意三角形内一点到两顶点的距离<另一点到这两顶点的距离来证明。
于是这个明显是有阶段性的,也即只能从左到右。于是可以Dp,当然也可以spfa或Dijkstra等等。
算法关键在于如何求出任意两点间的距离。
朴素做法要O(n^3),这明显是过不了的。
我们考虑从每个点开始走,发现每次阻挡视野的都是刚刚走过的矩形的边。于是我们可以维护一个视野,用每个访问过的点更新视野的up or low。
Postscript:记得加上等号……
#include <cstdio>
#include <algorithm>
#include <cmath>
typedef long long ll;
const int N = 2000 + 9;
struct Point
{
int x,y;
Point(const int _x = 0,const int _y = 0):
x(_x),y(_y){}
}p[N * 4],S,T;
int n,pre[N],start;
double dis[N*4],v;
inline ll sqr(const int x){return 1ll*x*x;}
inline double Dis(const Point x,const Point y)
{return std::sqrt(sqr(y.x-x.x) + sqr(y.y-x.y));}
inline ll cpr(const Point x,const Point y,const Point z)
{
const ll x1 = y.x - x.x, y1 = y.y - x.y;
const ll x2 = z.x - x.x, y2 = z.y - x.y;
return x1*y2 - x2*y1;
}
bool check(const int up,const int low,const Point x,const Point y)
{
if (up && cpr(x,p[up],y) > 0 || low && cpr(x,p[low],y) < 0) return false;
return true;
}
double Dijkstra()
{
static bool ins[N*4];
for (start = 1; start <= n; ++start)
if (p[start].x >= S.x) break;
for (int i = start--; i <= n; ++i) dis[i] = 99999999.0;
dis[start] = 0; p[start] = S; dis[4*N - 1] = 999999999.0; pre[start] = -1;
while (1) {
int k = 4*N - 1;
for (int i = start; i <= n; ++i)
if (!ins[i] && dis[k] > dis[i]) k = i;
if (n == k) return dis[k];
ins[k] = 1;
if (k == 7)
k = 7;
int up = 0,low = 0; double tmp;
for (int i = k + 1; i <= n; ++i) {
if (check(up,low,p[k],p[i]))
if (!ins[i] && dis[i] > (tmp = dis[k] + Dis(p[k],p[i])))
dis[i] = tmp;
if (((i-1)%4+1)&1 && (!up || cpr(p[k],p[up],p[i]) <= 0)) up = i;
else if (!(((i-1)%4+1)&1) && (!low || cpr(p[k],p[low],p[i]) >= 0)) low = i;
if (up && low && cpr(p[k],p[up],p[low]) > 0) break;
}
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("2433.in","r",stdin);
freopen("2433.out","w",stdout);
#endif
scanf("%d",&n);
for (int i = 1; i <= n; ++i) {
scanf("%d%d%d%d",&p[i*4-2].x,&p[i*4-2].y,&p[i*4-1].x,&p[i*4-1].y);
p[i*4-3] = Point(p[i*4-2].x,p[i*4-1].y);
p[i*4] = Point(p[i*4-1].x,p[i*4-2].y);
}
scanf("%d%d%d%d",&S.x,&S.y,&T.x,&T.y);
n *= 4;
if (S.x > T.x) std::swap(S,T);
for (; n; --n)
if (p[n].x <= T.x) break;
p[++n] = T;
scanf("%lf",&v);
printf("%.10f\n",Dijkstra()/v);
}
[bzoj2433][Noi2011]智能车比赛的更多相关文章
- 2433: [Noi2011]智能车比赛 - BZOJ
Description 新一届智能车大赛在JL大学开始啦!比赛赛道可以看作是由n个矩形区域拼接而成(如下图所示),每个矩形的边都平行于坐标轴,第i个矩形区域的左下角和右上角坐标分别为(xi,1,yi, ...
- Noi2011 : 智能车比赛
假设S在T左边,那么只能往右或者上下走 f[i]表示S到i点的最短路 f[i]=min(f[j]+dis(i,j)(i能看到j)) 判断i能看到j就维护一个上凸壳和一个下凸壳 时间复杂度$O(n^2) ...
- [NOI2011]智能车比赛 (计算几何 DAG)
/* 可以发现, 最优路径上的所有拐点, 基本上都满足一定的性质, 也就是说是在矩形上的拐角处 所以我们可以把他们提出来, 单独判断即可 由于我们提出来的不超过2n + 2个点, 我们将其按照x坐标排 ...
- 【[NOI2011]智能车比赛】(建图+spfa+坑爹精度)
过了这题我就想说一声艹,跟这个题死磕了将近6个小时,终于是把这个题死磕出来了.首先看到这个题的第一反应,和当初做过的一个房间最短路比较相似,然后考虑像那个题那样建边,然后跑最短路.(具体建边方法请参考 ...
- 【LOJ】#2443. 「NOI2011」智能车比赛
题解 显然是个\(n^2\)的dp 我们要找每个点不穿过非赛道区域能到达哪些区域的交点 可以通过控制两条向量负责最靠下的上边界,和最靠上的下边界,检查当前点在不在这两条向量之间即可,对于每个点可以\( ...
- BZOJ 2433 智能车比赛(计算几何+最短路)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2433 题意:若干个矩形排成一排(同一个x之上最多有一个矩形),矩形i和i+1相邻.给定两 ...
- 智能车学习(十五)——K60野火2013版例程
一.中断函数注册方法: 1.格式: 配置某个功能的中断 注册中断函数 开启中断 2.一个例子 pit_init_ms(PIT0,);//定时中断初始化 set_vector_handler(PIT0_ ...
- K60平台智能车开发工作随手记
(图片仅为示例,并不一定固定为这种造型) 第十二届全国大学生智能汽车竞赛有一个分项是光电四轮车的竞速(任务A),Seven她们组采购到的配件使用了freescale Crotex-M4内核的CPU,T ...
- 【sky第二期--PID算法】--【智能车论坛】
[sky第二期--PID算法] 想学PID的可以来[智能车论坛]这里有我发布的资料http://bbs.tekbots.eefocus.com/forum.php?mod=viewthread& ...
随机推荐
- 面试精选之Promise
常见Promise面试题 我们看一些 Promise 的常见面试问法,由浅至深. 1.了解 Promise 吗? 2.Promise 解决的痛点是什么? 3.Promise 解决的痛点还有其他方法可以 ...
- vue清空input file
input file是只读的,给form一个id,用form.reset()干掉里面input的值 document.getElementById("uploadForm")&am ...
- java===java基础学习(13)---this,static(静态变量和静态方法)的使用
package dog; public class PersonAndDog { public static void main(String[] args) { Dogs da_huang = ne ...
- python基础===字符串切片
字符串的子串可以通过切片标志来表示:两个由冒号隔开的索引. >>> word 'HelpA' >>> word[4] 'A' >>> word[0 ...
- Sql Server 2014/2012/2008/2005 数据库还原出现 3154错误的解决办法
在Sql Server 数据库还原出现 3154错误 解决方法1:不要在数据库名字上点右键选择还原,而要是在根目录“数据库”三个字上点右键选择还原,然后再选择数据库,问题便可以解决,如果不行参照方法 ...
- 剑指offer中数据结构与算法部分学习
2.3.4 树 遍历:前中后序,宽度优先. 二叉树的特例:二叉搜索树.堆(最大堆和最小堆,用于找最值).红黑树(c++ STL中的很多数据结果就是基于这实现的): 题7-重建二叉树:递归,设置四个位点 ...
- 经典卷积网络模型 — VGGNet模型笔记
一.简介 VGGNet是计算机视觉组(Visual Geometry Group)和Google DeepMind公司的研究员一起研究的深度卷积神经网络.VGGNet探索了卷积神经网络深度与性能之间的 ...
- python初学-元组、集合
元组: 元组基本和列表一样,区别是 元组的值一旦创建 就不能改变了 tup1=(1,2,3,4,5) print(tup1[2]) ---------------------------------- ...
- python中的map、reduce、filter、sorted函数
map.reduce.filter.sorted函数,这些函数都支持函数作为参数. map函数 map() 函数语法:map(function, iterable, ...) function -- ...
- linux命令(45):diff命令
1.命令格式: diff[参数][文件1或目录1][文件2或目录2] 2.命令功能: diff命令能比较单个文件或者目录内容.如果指定比较的是文件,则只有当输入为文本文件时才有效.以逐行的方式,比较文 ...