Dijkstra算法

1.定义概览

Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。注意该算法要求图中不存在负权边。

问题描述:在无向图 G=(V,E) 中,假设每条边 E[i] 的长度为 w[i],找到由顶点 V0 到其余各点的最短路径。(单源最短路径)

2.算法描述

1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。

2)算法步骤:

a.初始时,S只包含源点,即S={v},v的距离为0。U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则<u,v>正常有权值,若u不是v的出边邻接点,则<u,v>权值为∞。

b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。

c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。

d.重复步骤b和c直到所有顶点都包含在S中。

模板:

const int INF=0x3f3f3f3f;
const int maxn=; int dist[maxn],g[maxn][maxn],N;
bool vis[maxn]; void dijkstra()
{
for(int i=;i<=N;i++)
dist[i]=(i==)?:INF;
memset(vis,,sizeof(vis)); for(int i=;i<=N;i++)
{
int mark=-,mindis=INF;
for(int j=;j<=N;j++)
{
if(!vis[j]&&dist[j]<mindis)
{
mindis=dist[j];
mark=j;
}
}
vis[mark]=; for(int j=;j<=N;j++)
{
if(!vis[j])
{
dist[j]=min(dist[j],dist[mark]+g[mark][j]);
}
}
}
}

内存优化后的Dijkstra:

int dist[N], point[N], n, m;
bool vis[N]; std::vector<pair<int, int> > g[N];//g[i][j] = <fi, se> 为边(i , fi)的距离se; void dijkstra()
{
for(int i=;i<=n;i++)
dist[i]=(i==)?:INF;
memset(vis,,sizeof(vis)); for(int i=;i<=n;i++)
{
int mark=-,mindis=INF;
for(int j=;j<=n;j++)
{
if(!vis[j]&&dist[j]<mindis)
{
mindis=dist[j];
mark=j;
}
}
vis[mark]=; for(int j=;j<g[mark].size();j++)
{
if(!vis[g[mark][j].fi])
{
dist[g[mark][j].fi]=min(dist[g[mark][j].fi],dist[mark]+g[mark][j].se);
}
}
}
}

堆优化后的Dijkstra:

// 堆优化dijkstra

void dijkstra()
{
memset(dist,,sizeof(dist));
dist[S]=;
priority_queue<pII> q; /// -距离,点
q.push(make_pair(,S)); while(!q.empty())
{
pII tp=q.top(); q.pop();
LL u=tp.second;
if(vis[u]==true) continue;
vis[u]=true;
for(LL i=Adj[u];~i;i=edge[i].next)
{
LL v=edge[i].to;
LL len=edge[i].len;
if(vis[v]) continue;
if(dist[v]>dist[u]+len)
{
dist[v]=dist[u]+len;
q.push(make_pair(-dist[v],v));
}
}
}
}

dijkstra算法模板及其用法的更多相关文章

  1. 最短路径---dijkstra算法模板

    dijkstra算法模板 http://acm.hdu.edu.cn/showproblem.php?pid=1874 #include<stdio.h> #include<stri ...

  2. 【hdu 2544最短路】【Dijkstra算法模板题】

    Dijkstra算法 分析 Dijkstra算法适用于边权为正的情况.它可用于计算正权图上的单源最短路( Single-Source Shortest Paths, SSSP) , 即从单个源点出发, ...

  3. 图的最短路径算法Dijkstra算法模板

    Dijkstra算法:伪代码 //G为图,一般设为全局变量,数组d[u]为原点到达个点的额最短路径, s为起点 Dijkstra(G, d[u], s){ 初始化: for (循环n次){ u = 是 ...

  4. dijkstra算法 模板

    算法理解见: https://www.bilibili.com/video/av18586085/?p=83 模板: #define INF 1000000000 int N; int dist[10 ...

  5. hdu-2544-最短路(dijkstra算法模板)

    题目链接 题意很清晰,入门级题目,适合各种模板,可用dijkstra, floyd, Bellman-ford, spfa Dijkstra链接 Floyd链接 Bellman-Ford链接 SPFA ...

  6. Dijkstra算法模板

    自己对Dijstra算法的理解是: 首先输入保存点,边的权值(注意无向图和有向图在保存时的区别). 将表示从起点st到顶点 i 的距离的d[ i ]数组的每一个值初始化为INF,令d[st] = 0. ...

  7. 最短路径Dijkstra算法模板题---洛谷P3371 【模板】单源最短路径(弱化版)

    题目背景 本题测试数据为随机数据,在考试中可能会出现构造数据让SPFA不通过,如有需要请移步 P4779. 题目描述 如题,给出一个有向图,请输出从某一点出发到所有点的最短路径长度. 输入格式 第一行 ...

  8. 迪杰斯特拉/dijkstra 算法模板(具体凝视)

    #include <iostream> #include <malloc.h> #include <cstring> #include <stack> ...

  9. 最短路Dijkstra算法模板

    // // dijkstra妯℃澘.cpp // algorithm // // Created by david.xu on 2018/8/6. // Copyright 漏 2018骞?david ...

随机推荐

  1. 利用forEach循环Dom元素…

    大家都知道forEach是循环数组用的,而且很方便,可以丢掉for循环了,但是它不能循环Dom元素.其实我们可以利用call来完成forEach循环Dom; 假设有这样的HTML结构: <ul ...

  2. JDK工具学习

    javap: 可以对照源代码和字节码,从而了解很多编译器内部的工作. 查看class字节码:JDK有自带的工具包,使用javap命令打开.class文件就行 javap -c JAVAPTest

  3. 【uva11987】带删除的并查集

    题意:初始有N个集合,分别为 1 ,2 ,3 .....n.有三种操件1 p q 合并元素p和q的集合2 p q 把p元素移到q集合中3 p 输出p元素集合的个数及全部元素的和. 题解: 并查集.只是 ...

  4. A Simple Math Problem(矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1757 思路:矩阵快速幂模板题,不过因为刚刚入门矩阵快速幂,所以经常把数组f存反,导致本地错误一晚,差点 ...

  5. Coursera在线学习---第八节.K-means聚类算法与主成分分析(PCA)

    一.K-means聚类中心初始化问题. 1)随机初始化各个簇类的中心,进行迭代,直到收敛,并计算代价函数J. 如果k=2~10,可以进行上述步骤100次,并分别计算代价函数J,选取J值最小的一种聚类情 ...

  6. 【转】bmp文件格式详解

    先区分几个概念:16色和16位色一样吗? 不一样! 颜色位数,即是用多少位字节表示的值,每一位可以表示0和1两值.通常图片的颜色深度,简称色深,就是用位数来表示的,所以,我通常会看到8位色,16位色, ...

  7. 内核添加USB模块

    Device Drivers->SCSI device support->SCSI disk support Device Drivers->USB support->Supp ...

  8. linux和性能相关的命令及系统性能诊断

    常用的和性能有关的命令 Iostat/vmstat/top/mpstat/time/strace/ipcs/ipcrm/ifconfig/tethereal/netstat/free/uptime 关 ...

  9. leetcode 之Implement strStr()(27)

    字符串的匹配,返回匹配开始的位置,直接用暴力方式求解.为了更快的匹配,定义一个指针表示待匹配的字符串的长度,当长度不足时,可 直接停止匹配. char *strStr(char *haystack, ...

  10. leetcode 之Linked List Cycle(24)

    两个思路,一是用哈希表记录每个结点是还被访问过:二是定义两个快.慢指针,如果存在环的话,两个指针必定会在某位结点相遇. bool linkListNode(ListNode *head) { List ...