1 摄像头

在各类信息中,图像含有最丰富的信息,作为机器视觉领域的核心部件,摄像头被广泛地应用在安防、探险以及车牌检测等场合。摄像头按输出信号的类型来看可以分为数字摄像头和模拟摄像头,按照摄像头图像传感器材料构成来看可以分为CCD和CMOS。现在智能手机的摄像头绝大部分都是CMOS类型的数字摄像头。

1.1 数字摄像头跟模拟摄像头区别

    输出信号类型

数字摄像头输出信号为数字信号,模拟摄像头输出信号为标准的模拟信号。

    接口类型

数字摄像头有USB接口(比如常见的PC端免驱摄像头)、IEE1394火线接口(由苹果公司领导的开发联盟开发的一种高速度传送接口,数据传输率高达800Mbps)、千兆网接口(网络摄像头)。模拟摄像头多采用AV视频端子(信号线+地线)或S-VIDEO(即莲花头--SUPER VIDEO,是一种五芯的接口,由两路视频亮度信号、两路视频色度信号和一路公共屏蔽地线共五条芯线组成)。

    分辨率

模拟摄像头的感光器件,其像素指标一般维持在752(H)*582(V)左右的水平,像素数一般情况下维持在41万左右。现在的数字摄像头分辨率一般从数十万到数千万。但这并不能说明数字摄像头的成像分辨率就比模拟摄像头的高,原因在于模拟摄像头输出的是模拟视频信号,一般直接输入至电视或监视器,其感光器件的分辨率与电视信号的扫描数呈一定的换算关系,图像的显示介质已经确定,因此模拟摄像头的感光器件分辨率不是不能做高,而是依据于实际情况没必要做这么高。

1.2 CCD与CMOS的区别

摄像头的图像传感器CCD与CMOS传感器主要区别如下:

    成像材料

CCD与CMOS的名称跟它们成像使用的材料有关,CCD是"电荷耦合器件"(Charge Coupled Device)的简称,而CMOS是"互补金属氧化物半导体"(Complementary Metal Oxide Semiconductor)的简称。

    功耗

由于CCD的像素由MOS电容构成,读取电荷信号时需使用电压相当大(至少12V)的二相或三相或四相时序脉冲信号,才能有效地传输电荷。因此CCD的取像系统除了要有多个电源外,其外设电路也会消耗相当大的功率。有的CCD取像系统需消耗2~5W的功率。而CMOS光电传感器件只需使用一个单电源5V或3V,耗电量非常小,仅为CCD的1/8~1/10,有的CMOS取像系统只消耗20~50mW的功率。

    成像质量

CCD传感器件制作技术起步早,技术成熟,采用PN结或二氧化硅(sio2)隔离层隔离噪声,所以噪声低,成像质量好。与CCD相比,CMOS的主要缺点是噪声高及灵敏度低,不过现在随着CMOS电路消噪技术的不断发展,为生产高密度优质的CMOS传感器件提供了良好的条件,现在的CMOS传感器已经占领了大部分的市场,主流的单反相机、智能手机都已普遍采用CMOS传感器。

2 OV5640摄像头

本章主要讲解实验板配套的摄像头,它的实物见图 461,该摄像头主要由镜头、图像传感器、板载电路及下方的信号引脚组成。

图 461 实验板配套的OV5640摄像头

镜头部件包含一个镜头座和一个可旋转调节距离的凸透镜,通过旋转可以调节焦距,正常使用时,镜头座覆盖在电路板上遮光,光线只能经过镜头传输到正中央的图像传感器,它采集光线信号,然后把采集得的数据通过下方的信号引脚输出数据到外部器件。

2.1 OV5640传感器简介

图像传感器是摄像头的核心部件,上述摄像头中的图像传感器是一款型号为OV5640的CMOS类型数字图像传感器。该传感器支持输出最大为500万像素的图像 (2592x1944分辨率),支持使用VGA时序输出图像数据,输出图像的数据格式支持YUV(422/420)、YCbCr422、RGB565以及JPEG格式,若直接输出JPEG格式的图像时可大大减少数据量,方便网络传输。它还可以对采集得的图像进行补偿,支持伽玛曲线、白平衡、饱和度、色度等基础处理。根据不同的分辨率配置,传感器输出图像数据的帧率从15-60帧可调,工作时功率在150mW-200mW之间。

2.2 OV5640引脚及功能框图

OV5640模组带有自动对焦功能,引脚的定义见图 462。

图 462 OV5640传感器引脚分布图

信号引脚功能介绍如下,介绍如下表 461。

表 461 OV5640管脚

管脚名称

管脚类型

管脚描述

SIO_C

输入

SCCB总线的时钟线,可类比I2C的SCL

SIO_D

I/O

SCCB总线的数据线,可类比I2C的SDA

RESET

输入

系统复位管脚,低电平有效

PWDN

输入

掉电/省电模式,高电平有效

HREF

输出

行同步信号

VSYNC

输出

帧同步信号

PCLK

输出

像素同步时钟输出信号

XCLK

输入

外部时钟输入端口,可接外部晶振

Y2…Y9

输出

像素数据输出端口

下面我们配合图 463中的OV5640功能框图讲解这些信号引脚。

图 463 OV5640功能框图

(5)    控制寄存器

标号处的是OV5640的控制寄存器,它根据这些寄存器配置的参数来运行,而这些参数是由外部控制器通过SIO_C和SIO_D引脚写入的,SIO_C与SIO_D使用的通讯协议跟I2C十分类似,在STM32中我们完全可以直接用I2C硬件外设来控制。

(6)    通信、控制信号及时钟

标号‚处包含了OV5640的通信、控制信号及外部时钟,其中PCLK、HREF及VSYNC分别是像素同步时钟、行同步信号以及帧同步信号,这与液晶屏控制中的信号是很类似的。RESETB引脚为低电平时,用于复位整个传感器芯片,PWDN用于控制芯片进入低功耗模式。注意最后的一个XCLK引脚,它跟PCLK是完全不同的,XCLK是用于驱动整个传感器芯片的时钟信号,是外部输入到OV5640的信号;而PCLK是OV5640输出数据时的同步信号,它是由OV5640输出的信号。XCLK可以外接晶振或由外部控制器提供,若要类比XCLK之于OV5640就相当于HSE时钟输入引脚与STM32芯片的关系,PCLK引脚可类比STM32的I2C外设的SCL引脚。

(7)    感光矩阵

标号ƒ处的是感光矩阵,光信号在这里转化成电信号,经过各种处理,这些信号存储成由一个个像素点表示的数字图像。

(8)    数据输出信号

标号„处包含了DSP处理单元,它会根据控制寄存器的配置做一些基本的图像处理运算。这部分还包含了图像格式转换单元及压缩单元,转换出的数据最终通过Y0-Y9引脚输出,一般来说我们使用8根据数据线来传输,这时仅使用Y2-Y9引脚,OV5640与外部器件的连接方式见图 464。

图 464     8位数据线接法

(9)    数据输出信号

标号⑤处为VCM处理单元,他会通过图像分析来实现图像的自动对焦功能。要实现自动对焦还需要下载自动对焦固件到模组,后面摄像头实验详细介绍这个功能。

46.2.3 SCCB时序

外部控制器对OV5640寄存器的配置参数是通过SCCB总线传输过去的,而SCCB总线跟I2C十分类似,所以在STM32驱动中我们直接使用片上I2C外设与它通讯。SCCB与标准的I2C协议的区别是它每次传输只能写入或读取一个字节的数据,而I2C协议是支持突发读写的,即在一次传输中可以写入多个字节的数据(EEPROM中的页写入时序即突发写)。关于SCCB协议的完整内容可查看配套资料里的《SCCB协议》文档,下面我们简单介绍下。

SCCB的起始、停止信号及数据有效性

SCCB的起始信号、停止信号及数据有效性与I2C完全一样,见图 465及图 466。

    起始信号:在SIO_C为高电平时,SIO_D出现一个下降沿,则SCCB开始传输。

    停止信号:在SIO_C为高电平时,SIO_D出现一个上升沿,则SCCB停止传输。

    数据有效性:除了开始和停止状态,在数据传输过程中,当SIO_C为高电平时,必须保证SIO_D上的数据稳定,也就是说,SIO_D上的电平变换只能发生在SIO_C为低电平的时候,SIO_D的信号在SIO_C为高电平时被采集。

图 465 SCCB停止信号

图 466 SCCB的数据有效性

SCCB数据读写过程

在SCCB协议中定义的读写操作与I2C也是一样的,只是换了一种说法。它定义了两种写操作,即三步写操作和两步写操作。三步写操作可向从设备的一个目的寄存器中写入数据,见图 467。在三步写操作中,第一阶段发送从设备的ID地址+W标志(等于I2C的设备地址:7位设备地址+读写方向标志),第二阶段发送从设备目标寄存器的16位地址,第三阶段发送要写入寄存器的8位数据。图中的"X"数据位可写入1或0,对通讯无影响。

图 467 SCCB的三步写操作

而两步写操作没有第三阶段,即只向从器件传输了设备ID+W标志和目的寄存器的地址,见图 468。两步写操作是用来配合后面的读寄存器数据操作的,它与读操作一起使用,实现I2C的复合过程。

图 468 SCCB的两步写操作

两步读操作,它用于读取从设备目的寄存器中的数据,见图 469。在第一阶段中发送从设备的设备ID+R标志(设备地址+读方向标志)和自由位,在第二阶段中读取寄存器中的8位数据和写NA 位(非应答信号)。由于两步读操作没有确定目的寄存器的地址,所以在读操作前,必需有一个两步写操作,以提供读操作中的寄存器地址。

图 469 SCCB的两步读操作

可以看到,以上介绍的SCCB特性都与I2C无区别,而I2C比SCCB还多出了突发读写的功能,所以SCCB可以看作是I2C的子集,我们完全可以使用STM32的I2C外设来与OV5640进行SCCB通讯。

46.2.4 OV5640的寄存器

控制OV5640涉及到它很多的寄存器,可直接查询《ov5640datasheet》了解,通过这些寄存器的配置,可以控制它输出图像的分辨率大小、图像格式及图像方向等。要注意的是OV5640寄存器地址为16位。

官方还提供了一个《OV5640_自动对焦照相模组应用指南(DVP_接口)__R2.13C.pdf》的文档,它针对不同的配置需求,提供了配置范例,见图 4610。其中write_SCCB是一个利用SCCB向寄存器写入数据的函数,第一个参数为要写入的寄存器的地址,第二个参数为要写入的内容。

图 4610 调节帧率的寄存器配置范例

46.2.5 像素数据输出时序

对OV5640采用SCCB协议进行控制,而它输出图像时则使用VGA时序(还可用SVGA、UXGA,这些时序都差不多),这跟控制液晶屏输入图像时很类似。OV5640输出图像时,一帧帧地输出,在帧内的数据一般从左到右,从上到下,一个像素一个像素地输出(也可通过寄存器修改方向),见图 4611。

图 4611 摄像头数据输出

例如,图 4612,若我们使用Y2-Y9数据线,图像格式设置为RGB565,进行数据输出时,Y2-Y9数据线会在1个像素同步时钟PCLK的驱动下发送1字节的数据信号,所以2个PCLK时钟可发送1个RGB565格式的像素数据。像素数据依次传输,每传输完一行数据时,行同步信号HREF会输出一个电平跳变信号,每传输完一帧图像时,VSYNC会输出一个电平跳变信号。

图 4612 DVP接口时序

ov5640介绍的更多相关文章

  1. ov5640摄像头设备驱动

    http://www.cnblogs.com/firege/p/5806121.html  (驱动大神) http://blog.csdn.net/yanbixing123/article/detai ...

  2. 第46章 DCMI—OV5640摄像头—零死角玩转STM32-F429系列

    第46章     DCMI—OV5640摄像头 全套200集视频教程和1000页PDF教程请到秉火论坛下载:www.firebbs.cn 野火视频教程优酷观看网址:http://i.youku.com ...

  3. 基于iCamera App Kit 测试oV5640 500w分辨率 摄像头 总结

    基于iCamera App Kit 测试oV5640 摄像头 总结 iCamera App Kit 下载地址 http://pan.baidu.com/s/1kUMIwB1 可以参考下载链接的说明手册 ...

  4. CSS3 background-image背景图片相关介绍

    这里将会介绍如何通过background-image设置背景图片,以及背景图片的平铺.拉伸.偏移.设置大小等操作. 1. 背景图片样式分类 CSS中设置元素背景图片及其背景图片样式的属性主要以下几个: ...

  5. MySQL高级知识- MySQL的架构介绍

    [TOC] 1.MySQL 简介 概述 MySQL是一个关系型数据库管理系统,由瑞典MySQL AB公司开发,目前属于Oracle公司. MySQL是一种关联数据库管理系统,将数据保存在不同的表中,而 ...

  6. Windows Server 2012 NIC Teaming介绍及注意事项

    Windows Server 2012 NIC Teaming介绍及注意事项 转载自:http://www.it165.net/os/html/201303/4799.html Windows Ser ...

  7. Linux下服务器端开发流程及相关工具介绍(C++)

    去年刚毕业来公司后,做为新人,发现很多东西都没有文档,各种工具和地址都是口口相传的,而且很多时候都是不知道有哪些工具可以使用,所以当时就想把自己接触到的这些东西记录下来,为后来者提供参考,相当于一个路 ...

  8. JavaScript var关键字、变量的状态、异常处理、命名规范等介绍

    本篇主要介绍var关键字.变量的undefined和null状态.异常处理.命名规范. 目录 1. var 关键字:介绍var关键字的使用. 2. 变量的状态:介绍变量的未定义.已定义未赋值.已定义已 ...

  9. HTML DOM 介绍

    本篇主要介绍DOM内容.DOM 节点.节点属性以及获取HTML元素的方法. 目录 1. 介绍 DOM:介绍DOM,以及对DOM分类和功能的说明. 2. DOM 节点:介绍DOM节点分类和节点层次. 3 ...

随机推荐

  1. antd Grid

    import { Row, Col } from 'antd'; <Row type="flex" //内容布局(左靠齐,右靠齐,居中) justify="star ...

  2. python3.6安装总结

    安装Python 3.6 过程中出现了一些问题,导致费时费力.因此把自己安装过程中出现的问题写出来,以备大家查看. 第一步:比较简单的一种安装方法是直接安装Anacanda3 python即可,这时可 ...

  3. 保存头像- vue项目-base64字符串转图片

    <img :onerror="errpic" class="customerHead" :src="param.customerHead&quo ...

  4. 2018.12.31 Failed to load JavaHL Library.错误解决

    创建项目出现下面的错误 Failed to load JavaHL Library. These are the errors that were encountered: no libsvnjava ...

  5. 剑指offer 14 调整数组顺序使奇数位于偶数前面

    牛客网上的题目还有一个额外的要求,就是不改变数组原始的前后数据,这种可以用队列来存储,或者把前后比较变为相邻的元素比较. 这个题目,主要要考察扩展性,用func函数就实现了扩展性.只需要改func函数 ...

  6. __future__模块

    Python提供了__future__模块,把下一个新版本的特性导入到当前版本,于是我们就可以在当前版本中使用一些新版本的特性,比如除法: 在Python 2.x中,对于除法有两种情况,如果是整数相除 ...

  7. get-pip.py 安装

    http://www.pip-installer.org/en/latest/installing.html$ curl http://pypi.python.org/packages/source/ ...

  8. js判断值是不是全是数字

    if(isNaN(value)){ 不是数字 }else{ 全是数字 }

  9. Knowledge Point 20180305 Java程序员详述编码Unicode

    Unicode Unicode(统一码.万国码.单一码)是计算机科学领域里的一项业界标准,包括字符集.编码方案等.Unicode 是为了解决传统的字符编码方案的局限而产生的,它为每种语言中的每个字符设 ...

  10. springBoot 官方整合的redis 使用教程:(StringRedisTemplate 方式存储 Object类型value)

    前言:最近新项目准备用 redis 简单的缓存 一些查询信息,以便第二次查询效率高一点. 项目框架:springBoot.java.maven  说明:edis存储的数据类型,key一般都是Strin ...