ov5640介绍
1 摄像头
在各类信息中,图像含有最丰富的信息,作为机器视觉领域的核心部件,摄像头被广泛地应用在安防、探险以及车牌检测等场合。摄像头按输出信号的类型来看可以分为数字摄像头和模拟摄像头,按照摄像头图像传感器材料构成来看可以分为CCD和CMOS。现在智能手机的摄像头绝大部分都是CMOS类型的数字摄像头。
1.1 数字摄像头跟模拟摄像头区别
输出信号类型
数字摄像头输出信号为数字信号,模拟摄像头输出信号为标准的模拟信号。
接口类型
数字摄像头有USB接口(比如常见的PC端免驱摄像头)、IEE1394火线接口(由苹果公司领导的开发联盟开发的一种高速度传送接口,数据传输率高达800Mbps)、千兆网接口(网络摄像头)。模拟摄像头多采用AV视频端子(信号线+地线)或S-VIDEO(即莲花头--SUPER VIDEO,是一种五芯的接口,由两路视频亮度信号、两路视频色度信号和一路公共屏蔽地线共五条芯线组成)。
分辨率
模拟摄像头的感光器件,其像素指标一般维持在752(H)*582(V)左右的水平,像素数一般情况下维持在41万左右。现在的数字摄像头分辨率一般从数十万到数千万。但这并不能说明数字摄像头的成像分辨率就比模拟摄像头的高,原因在于模拟摄像头输出的是模拟视频信号,一般直接输入至电视或监视器,其感光器件的分辨率与电视信号的扫描数呈一定的换算关系,图像的显示介质已经确定,因此模拟摄像头的感光器件分辨率不是不能做高,而是依据于实际情况没必要做这么高。
1.2 CCD与CMOS的区别
摄像头的图像传感器CCD与CMOS传感器主要区别如下:
成像材料
CCD与CMOS的名称跟它们成像使用的材料有关,CCD是"电荷耦合器件"(Charge Coupled Device)的简称,而CMOS是"互补金属氧化物半导体"(Complementary Metal Oxide Semiconductor)的简称。
功耗
由于CCD的像素由MOS电容构成,读取电荷信号时需使用电压相当大(至少12V)的二相或三相或四相时序脉冲信号,才能有效地传输电荷。因此CCD的取像系统除了要有多个电源外,其外设电路也会消耗相当大的功率。有的CCD取像系统需消耗2~5W的功率。而CMOS光电传感器件只需使用一个单电源5V或3V,耗电量非常小,仅为CCD的1/8~1/10,有的CMOS取像系统只消耗20~50mW的功率。
成像质量
CCD传感器件制作技术起步早,技术成熟,采用PN结或二氧化硅(sio2)隔离层隔离噪声,所以噪声低,成像质量好。与CCD相比,CMOS的主要缺点是噪声高及灵敏度低,不过现在随着CMOS电路消噪技术的不断发展,为生产高密度优质的CMOS传感器件提供了良好的条件,现在的CMOS传感器已经占领了大部分的市场,主流的单反相机、智能手机都已普遍采用CMOS传感器。
2 OV5640摄像头
本章主要讲解实验板配套的摄像头,它的实物见图 461,该摄像头主要由镜头、图像传感器、板载电路及下方的信号引脚组成。


图 461 实验板配套的OV5640摄像头
镜头部件包含一个镜头座和一个可旋转调节距离的凸透镜,通过旋转可以调节焦距,正常使用时,镜头座覆盖在电路板上遮光,光线只能经过镜头传输到正中央的图像传感器,它采集光线信号,然后把采集得的数据通过下方的信号引脚输出数据到外部器件。
2.1 OV5640传感器简介
图像传感器是摄像头的核心部件,上述摄像头中的图像传感器是一款型号为OV5640的CMOS类型数字图像传感器。该传感器支持输出最大为500万像素的图像 (2592x1944分辨率),支持使用VGA时序输出图像数据,输出图像的数据格式支持YUV(422/420)、YCbCr422、RGB565以及JPEG格式,若直接输出JPEG格式的图像时可大大减少数据量,方便网络传输。它还可以对采集得的图像进行补偿,支持伽玛曲线、白平衡、饱和度、色度等基础处理。根据不同的分辨率配置,传感器输出图像数据的帧率从15-60帧可调,工作时功率在150mW-200mW之间。
2.2 OV5640引脚及功能框图
OV5640模组带有自动对焦功能,引脚的定义见图 462。

图 462 OV5640传感器引脚分布图
信号引脚功能介绍如下,介绍如下表 461。
表 461 OV5640管脚
|
管脚名称 |
管脚类型 |
管脚描述 |
|
SIO_C |
输入 |
SCCB总线的时钟线,可类比I2C的SCL |
|
SIO_D |
I/O |
SCCB总线的数据线,可类比I2C的SDA |
|
RESET |
输入 |
系统复位管脚,低电平有效 |
|
PWDN |
输入 |
掉电/省电模式,高电平有效 |
|
HREF |
输出 |
行同步信号 |
|
VSYNC |
输出 |
帧同步信号 |
|
PCLK |
输出 |
像素同步时钟输出信号 |
|
XCLK |
输入 |
外部时钟输入端口,可接外部晶振 |
|
Y2…Y9 |
输出 |
像素数据输出端口 |
下面我们配合图 463中的OV5640功能框图讲解这些信号引脚。

图 463 OV5640功能框图
(5) 控制寄存器
标号处的是OV5640的控制寄存器,它根据这些寄存器配置的参数来运行,而这些参数是由外部控制器通过SIO_C和SIO_D引脚写入的,SIO_C与SIO_D使用的通讯协议跟I2C十分类似,在STM32中我们完全可以直接用I2C硬件外设来控制。
(6) 通信、控制信号及时钟
标号处包含了OV5640的通信、控制信号及外部时钟,其中PCLK、HREF及VSYNC分别是像素同步时钟、行同步信号以及帧同步信号,这与液晶屏控制中的信号是很类似的。RESETB引脚为低电平时,用于复位整个传感器芯片,PWDN用于控制芯片进入低功耗模式。注意最后的一个XCLK引脚,它跟PCLK是完全不同的,XCLK是用于驱动整个传感器芯片的时钟信号,是外部输入到OV5640的信号;而PCLK是OV5640输出数据时的同步信号,它是由OV5640输出的信号。XCLK可以外接晶振或由外部控制器提供,若要类比XCLK之于OV5640就相当于HSE时钟输入引脚与STM32芯片的关系,PCLK引脚可类比STM32的I2C外设的SCL引脚。
(7) 感光矩阵
标号处的是感光矩阵,光信号在这里转化成电信号,经过各种处理,这些信号存储成由一个个像素点表示的数字图像。
(8) 数据输出信号
标号处包含了DSP处理单元,它会根据控制寄存器的配置做一些基本的图像处理运算。这部分还包含了图像格式转换单元及压缩单元,转换出的数据最终通过Y0-Y9引脚输出,一般来说我们使用8根据数据线来传输,这时仅使用Y2-Y9引脚,OV5640与外部器件的连接方式见图 464。

图 464 8位数据线接法
(9) 数据输出信号
标号⑤处为VCM处理单元,他会通过图像分析来实现图像的自动对焦功能。要实现自动对焦还需要下载自动对焦固件到模组,后面摄像头实验详细介绍这个功能。
46.2.3 SCCB时序
外部控制器对OV5640寄存器的配置参数是通过SCCB总线传输过去的,而SCCB总线跟I2C十分类似,所以在STM32驱动中我们直接使用片上I2C外设与它通讯。SCCB与标准的I2C协议的区别是它每次传输只能写入或读取一个字节的数据,而I2C协议是支持突发读写的,即在一次传输中可以写入多个字节的数据(EEPROM中的页写入时序即突发写)。关于SCCB协议的完整内容可查看配套资料里的《SCCB协议》文档,下面我们简单介绍下。
SCCB的起始、停止信号及数据有效性
SCCB的起始信号、停止信号及数据有效性与I2C完全一样,见图 465及图 466。
起始信号:在SIO_C为高电平时,SIO_D出现一个下降沿,则SCCB开始传输。
停止信号:在SIO_C为高电平时,SIO_D出现一个上升沿,则SCCB停止传输。
数据有效性:除了开始和停止状态,在数据传输过程中,当SIO_C为高电平时,必须保证SIO_D上的数据稳定,也就是说,SIO_D上的电平变换只能发生在SIO_C为低电平的时候,SIO_D的信号在SIO_C为高电平时被采集。

图 465 SCCB停止信号

图 466 SCCB的数据有效性
SCCB数据读写过程
在SCCB协议中定义的读写操作与I2C也是一样的,只是换了一种说法。它定义了两种写操作,即三步写操作和两步写操作。三步写操作可向从设备的一个目的寄存器中写入数据,见图 467。在三步写操作中,第一阶段发送从设备的ID地址+W标志(等于I2C的设备地址:7位设备地址+读写方向标志),第二阶段发送从设备目标寄存器的16位地址,第三阶段发送要写入寄存器的8位数据。图中的"X"数据位可写入1或0,对通讯无影响。

图 467 SCCB的三步写操作
而两步写操作没有第三阶段,即只向从器件传输了设备ID+W标志和目的寄存器的地址,见图 468。两步写操作是用来配合后面的读寄存器数据操作的,它与读操作一起使用,实现I2C的复合过程。

图 468 SCCB的两步写操作
两步读操作,它用于读取从设备目的寄存器中的数据,见图 469。在第一阶段中发送从设备的设备ID+R标志(设备地址+读方向标志)和自由位,在第二阶段中读取寄存器中的8位数据和写NA 位(非应答信号)。由于两步读操作没有确定目的寄存器的地址,所以在读操作前,必需有一个两步写操作,以提供读操作中的寄存器地址。

图 469 SCCB的两步读操作
可以看到,以上介绍的SCCB特性都与I2C无区别,而I2C比SCCB还多出了突发读写的功能,所以SCCB可以看作是I2C的子集,我们完全可以使用STM32的I2C外设来与OV5640进行SCCB通讯。
46.2.4 OV5640的寄存器
控制OV5640涉及到它很多的寄存器,可直接查询《ov5640datasheet》了解,通过这些寄存器的配置,可以控制它输出图像的分辨率大小、图像格式及图像方向等。要注意的是OV5640寄存器地址为16位。
官方还提供了一个《OV5640_自动对焦照相模组应用指南(DVP_接口)__R2.13C.pdf》的文档,它针对不同的配置需求,提供了配置范例,见图 4610。其中write_SCCB是一个利用SCCB向寄存器写入数据的函数,第一个参数为要写入的寄存器的地址,第二个参数为要写入的内容。

图 4610 调节帧率的寄存器配置范例
46.2.5 像素数据输出时序
对OV5640采用SCCB协议进行控制,而它输出图像时则使用VGA时序(还可用SVGA、UXGA,这些时序都差不多),这跟控制液晶屏输入图像时很类似。OV5640输出图像时,一帧帧地输出,在帧内的数据一般从左到右,从上到下,一个像素一个像素地输出(也可通过寄存器修改方向),见图 4611。

图 4611 摄像头数据输出
例如,图 4612,若我们使用Y2-Y9数据线,图像格式设置为RGB565,进行数据输出时,Y2-Y9数据线会在1个像素同步时钟PCLK的驱动下发送1字节的数据信号,所以2个PCLK时钟可发送1个RGB565格式的像素数据。像素数据依次传输,每传输完一行数据时,行同步信号HREF会输出一个电平跳变信号,每传输完一帧图像时,VSYNC会输出一个电平跳变信号。

图 4612 DVP接口时序
ov5640介绍的更多相关文章
- ov5640摄像头设备驱动
http://www.cnblogs.com/firege/p/5806121.html (驱动大神) http://blog.csdn.net/yanbixing123/article/detai ...
- 第46章 DCMI—OV5640摄像头—零死角玩转STM32-F429系列
第46章 DCMI—OV5640摄像头 全套200集视频教程和1000页PDF教程请到秉火论坛下载:www.firebbs.cn 野火视频教程优酷观看网址:http://i.youku.com ...
- 基于iCamera App Kit 测试oV5640 500w分辨率 摄像头 总结
基于iCamera App Kit 测试oV5640 摄像头 总结 iCamera App Kit 下载地址 http://pan.baidu.com/s/1kUMIwB1 可以参考下载链接的说明手册 ...
- CSS3 background-image背景图片相关介绍
这里将会介绍如何通过background-image设置背景图片,以及背景图片的平铺.拉伸.偏移.设置大小等操作. 1. 背景图片样式分类 CSS中设置元素背景图片及其背景图片样式的属性主要以下几个: ...
- MySQL高级知识- MySQL的架构介绍
[TOC] 1.MySQL 简介 概述 MySQL是一个关系型数据库管理系统,由瑞典MySQL AB公司开发,目前属于Oracle公司. MySQL是一种关联数据库管理系统,将数据保存在不同的表中,而 ...
- Windows Server 2012 NIC Teaming介绍及注意事项
Windows Server 2012 NIC Teaming介绍及注意事项 转载自:http://www.it165.net/os/html/201303/4799.html Windows Ser ...
- Linux下服务器端开发流程及相关工具介绍(C++)
去年刚毕业来公司后,做为新人,发现很多东西都没有文档,各种工具和地址都是口口相传的,而且很多时候都是不知道有哪些工具可以使用,所以当时就想把自己接触到的这些东西记录下来,为后来者提供参考,相当于一个路 ...
- JavaScript var关键字、变量的状态、异常处理、命名规范等介绍
本篇主要介绍var关键字.变量的undefined和null状态.异常处理.命名规范. 目录 1. var 关键字:介绍var关键字的使用. 2. 变量的状态:介绍变量的未定义.已定义未赋值.已定义已 ...
- HTML DOM 介绍
本篇主要介绍DOM内容.DOM 节点.节点属性以及获取HTML元素的方法. 目录 1. 介绍 DOM:介绍DOM,以及对DOM分类和功能的说明. 2. DOM 节点:介绍DOM节点分类和节点层次. 3 ...
随机推荐
- [EffectiveC++]item36:绝不重新定义继承而来的non-virtual函数
- 天地图,js 4.0 api,简单调用,高手请绕行
本文介绍使用天地图 js4.0 api,实现地图显示后台gps分布情况: 主要借用H5 GPS获取,利用天地图的背景展示: 效果图如下: 第一步,通过采集网页,手机gps数据,录入后台数据库:界面如下 ...
- PHP5.5的新特性
看了@轩脉刃 今天出炉的PHP 5.5 新特性.不过没有翻译全,我这里稍微补充下,整理成完整的一篇:) 原文:http://www.php.net/manual/zh/migration55.new- ...
- C#配置IIS搭建网站的工具类
public class IISWorker { public static string HostName = "localhost"; /// <summary> ...
- 树莓派(Raspberry Pi)上手小记
引言 本日志中有不少软广告,博主并没有收他们任何好处,完全是给想入手的小伙伴们指条路而已.不喜勿看,不喜勿闻,不喜勿喷. 介绍 之前两三个月突然听说了这么个东西,也没有留意,某天突然在一个微信公众号上 ...
- hdu 3068 最长回文_Manacher模板
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/neng18/article/details/24269469 pid=3068" rel= ...
- [JSOI2016]最佳团体
嘟嘟嘟 01分数规划+树形背包. 然后就没了. 结果我调了半天,原因还是树形背包不熟练. 我是用dfs序求的,转化的时候,是dp[i][j]转化到dp[i + 1][j + 1]或dp[i +siz[ ...
- luogu P4231 三步必杀
嘟嘟嘟 这道题就是区间加一个等差数列,然后最后求每一个数的值. O(n)做法:二阶差分. 其实就是差分两遍.举个例子 0 0 0 0 0 0 0,变成了 0 2 4 6 8 0 0.第一遍差分:0 2 ...
- 强大的Windows 10数字权利获取工具HWIDGEN
前言: 每当windows 10 系统过期就是头疼的key激活,更奇怪的是每次激活的方式不同,上次有效下次就不知道有没有效了,今天发现一种更改数字权利的工具脚本,不要太牛逼!!! 安装之前的准备工作: ...
- C# Path类 FileStream(文件流) 与 File(文件) 读取的区别
1.采用文件流读取数据是一点一点从文件中读取数据对内存的压力相对较小;而采用文件读取数据是一下全部读取过来对内存造成的压力相对较大 2.File读取: string str = @"E:\Q ...