MapReduce程序——WordCount(Windows_Eclipse + Ubuntu14.04_Hadoop2.9.0)
本文主要参考《Hadoop应用开发技术详解(作者:刘刚)》
一、工作环境
Windows7: Eclipse + JDK1.8.0
Ubuntu14.04:Hadoop2.9.0
二、准备工作——导入JAR包
1. 建一个Hadoop专用的工作空间
2. 在工作空间的目录下建一个专门用来存放开发MapReduce程序所需的Hadoop依赖的JAR包的文件夹
所需的JAR包在Ubuntu中$HADOOP_HOME/share/hadoop下,将JAR包复制到刚刚建好的文件夹中

需要的JAR包如下,可能有部分重复:
$HADOOP_HOME/share/hadoop/common & $HADOOP_HOME/share/hadoop/common/lib


$HADOOP_HOME/share/hadoop/hdfs & $HADOOP_HOME/share/hadoop/hdfs/lib


$HADOOP_HOME/share/hadoop/httpfs/tomcat/lib

$HADOOP_HOME/share/hadoop/kms/tomcat/lib

$HADOOP_HOME/share/hadoop/mapreduce & $HADOOP_HOME/share/hadoop/mapreduce/lib


$HADOOP_HOME/share/hadoop/tools/lib

$HADOOP_HOME/share/hadoop/yarn & $HADOOP_HOME/share/hadoop/yarn/lib


3. 新建用户库
Windows → Preference → Java → Build Path → User Libraries → New...
看到如下界面:

点击OK后看到如下界面:

点击Add External JARs... → 在刚刚建好的文件夹中选中所有JAR包 → 打开 → OK
用户库创建成功!
三、创建一个Java工程
File → New → Java Project
除了红框的内容,其他选项默认

右击项目名 → Build Path → Add Libraries... → User Library → 选中建好的用户库

四、MapReduce代码的实现
1. WordMapper类


package wordCount; import java.io.IOException;
import java.util.StringTokenizer; import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper; // 继承Mapper接口,设置Map的输入类型为<Object, Text>,输出类型为<Text, IntWritable>
public class WordMapper extends Mapper<Object, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1); // one表示单词出现一次
private Text word = new Text(); // word用于存储切下来的词
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString()); // 对输入的行切词
while (itr.hasMoreTokens()) {
word.set(itr.nextToken()); // 切下来的单词存入word
context.write(word, one);
}
}
}
2. WordReducer类


package wordCount; import java.io.IOException; import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer; // 继承Reducer接口,设置Reduce的输入类型为<Text, IntWritable>,输出类型为<Text, IntWritable>
public class WordReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable(); // result记录单词的频数
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
// 对获取的<key, IntWritable>计算value的和
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum); // 将频数设置到result中
context.write(key, result); // 收集结果
}
}
3. WordMain驱动类

package wordCount; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser; public class WordMain { public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
// 检查运行命令
if (otherArgs.length != 2) {
System.err.println("Usage: wordCount <in> <out>");
System.exit(2);
}
// 配置作业名
Job job = new Job(conf, "word count");
// 配置作业的各个类
job.setJarByClass(WordMain.class);
job.setMapperClass(WordMapper.class);
job.setCombinerClass(WordReducer.class);
job.setReducerClass(WordReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
五、打包成JAR文件
右击项目名 → Export → Java → JAR file
看到如下界面:
除了红框的内容,其他选项默认

点击Finish
JAR文件生成成功!
六、部署和运行
1. 把刚刚生成的JAR文件发送到Hadoop集群的Master节点的$HADOOP_HOME下面
2. 在Master节点的$HADOOP_HOME下面创建两个待统计词频的文件,file1.txt和file2.txt
file1.txt
Hello, I love coding
Are you OK?
Hello, I love hadoop
Are you OK?
file2.txt
Hello I love coding
Are you OK ?
Hello I love hadoop
Are you OK ?
3. 上传文件到HDFS系统中
$ hdfs dfs -put ./file* input
查看是否上传成功
$ hdfs dfs -ls input
4. 运行程序
$ hdfs dfs -rm -r output #如果HDFS系统中存在output目录
$ hadoop jar wordCount.jar wordCount.WordMain input/file* output
5. 查看运行结果
$ hdfs dfs -cat output/*

以上
MapReduce程序——WordCount(Windows_Eclipse + Ubuntu14.04_Hadoop2.9.0)的更多相关文章
- 编写简单的Mapreduce程序并部署在Hadoop2.2.0上运行
今天主要来说说怎么在Hadoop2.2.0分布式上面运行写好的 Mapreduce 程序. 可以在eclipse写好程序,export或用fatjar打包成jar文件. 先给出这个程序所依赖的Mave ...
- 第一个MapReduce程序——WordCount
通常我们在学习一门语言的时候,写的第一个程序就是Hello World.而在学习Hadoop时,我们要写的第一个程序就是词频统计WordCount程序. 一.MapReduce简介 1.1 MapRe ...
- Hadoop 6、第一个mapreduce程序 WordCount
1.程序代码 Map: import java.io.IOException; import org.apache.hadoop.io.IntWritable; import org.apache.h ...
- MapReduce程序(一)——wordCount
写在前面:WordCount的功能是统计输入文件中每个单词出现的次数.基本解决思路就是将文本内容切分成单词,将其中相同的单词聚集在一起,统计其数量作为该单词的出现次数输出. 1.MapReduce之w ...
- 使用Eclipse编译运行MapReduce程序 Hadoop2.6.0_Ubuntu/CentOS
使用Eclipse编译运行MapReduce程序 Hadoop2.6.0_Ubuntu/CentOS 2014-10-10 (updated: 2016-05-22) 64246 153 本教程介绍 ...
- mapreduce程序编写(WordCount)
折腾了半天.终于编写成功了第一个自己的mapreduce程序,并通过打jar包的方式运行起来了. 运行环境: windows 64bit eclipse 64bit jdk6.0 64bit 一.工程 ...
- 使用命令行编译打包运行自己的MapReduce程序 Hadoop2.6.0
使用命令行编译打包运行自己的MapReduce程序 Hadoop2.6.0 网上的 MapReduce WordCount 教程对于如何编译 WordCount.java 几乎是一笔带过… 而有写到的 ...
- 运行第一个MapReduce程序,WordCount
1.安装Eclipse 安装后如果无法启动重新配置Java路径(如果之前配置了Java) 2.下载安装eclipse的hadoop插件 注意版本对应,放到/uer/lib/eclipse/plugin ...
- Hadoop实战5:MapReduce编程-WordCount统计单词个数-eclipse-java-windows环境
Hadoop研发在java环境的拓展 一 背景 由于一直使用hadoop streaming形式编写mapreduce程序,所以目前的hadoop程序局限于python语言.下面为了拓展java语言研 ...
随机推荐
- Vue中动态添加多个class
vue中可以通过 :class=""这样来根据一定的条件来动态添加class,但是有时候需要判断的条件比较多,需要动态添加的class也比较多,这个时候其实也很简单 先看一下示例: ...
- hibernate detached分离查询 与 抓取策略注意事项
1.detached在抓取策略为 jion显式左外连接查询情况下 会产生笛卡儿积现象 DetachedCriteria dc = DetachedCriteria.forClass(Topic.cla ...
- go——结构体(二)
Go语言是一种静态类型的编程语言.这意味着,编译器需要在编译时知晓程序里每个值的类型. 如果提前知道类型信息,编译器就可以确保程序合理的使用值. 这有助于减少潜在的内存异常和bug,并且使编译器有机会 ...
- arcgis中给属性文件加x y坐标
两种方式: 一, 1在ArcGIS 9.2桌面软件arcview级别以上软件中,加载要添加x,y坐标的数据,打开属性表,添加X.Y字段 2 右键X字段,选择calculate geometry,如果颜 ...
- GIT学习笔记(5):变基
GIT学习笔记(5):变基rebase 变基 引入变基 在Git中整合来自不同分支的修改主要有两种方法:merge以及rebase. 整合分支最容易的方法是merge,他会把两个分支的最新快照以及两者 ...
- 查询前几条记录 top limit
SQL Server 数据库中的Top关键字可实现查询数据库表中的前几条数据,但是需要注意的是,Top关键字只能在SQL Server数据库中可以使用,而在MySQL数据库中就要使用具有同样功能的LI ...
- Spring 配置log4j和简单介绍Log4J的使用
Log4j 是Apache的一个开放源代码项目,通过使用Log4j,我们可以控制日志信息输送的目的地是控制台.文件.GUI组件.甚至是套接口服务器.NT的事 件记录器.UNIX Syslog守护进程等 ...
- 【hihocoder】三十九周:二分.归并排序之逆序对
就是用归并排序求数组中得逆序对.假设数组为a:[2 4 5],和b:[1 3],那么在这一次归并的时候逆序对这样求,belement表示当前result数组中b数组对应的元素个数,total表示逆序对 ...
- 网络:W5500用浏览器配置设备
1.背景 嵌入式端使用网络通信后,可以在PC端进行设备配置.方法有二:1)上位机配置:2)浏览器配置. 上位机配置可以把设置和测量作为一体,功能可以很强大,体验较好. 浏览器配置就是在电路板上搭载一个 ...
- iptables配置顺序-两条规则会忽略后边的
oracle在centos本机能够正常访问,关闭防火墙也能够远程访问,但是一旦开启防火墙则不能远程访问 尝试添加规则iptables -A INPUT -m state --state NEW -m ...