题目链接

维护整个数列的异或前缀和和\(s\),然后每次就是要求\(s[N]\text{^}x\text{^}s[k],l-1<=k<=r-1\)的最大值

如果没有\(l\)的限制,那么直接用可持久化\(Trie\)查询第\(r\)个版本跑最大异或和就行。

\(Trie\)求最大异或值的方法就是把数看成二进制建树,一位位往下走能往相反的就往相反的走,不能就走相同的,走到底就是答案。

现在多了\(l\)的限制,所以需要记录每个节点在这个节点的子树中结尾的数的最大的编号是多少,记为\(latest\),每次限制只能走\(latest>=l-1\)的节点。

#include <cstdio>
#define re register
const int MAXN = 20000010;
inline int read(){
int s = 0, w = 1;
char ch = getchar();
while(ch < '0' || ch > '9'){if(ch == '-')w = -1;ch = getchar();}
while(ch >= '0' && ch <= '9') s = s * 10 + ch - '0',ch = getchar();
return s * w;
}
int trie[MAXN][2], latest[MAXN], root[MAXN], s[MAXN];
int n, m, num;
inline int max(const int a, const int b){
return a > b ? a : b;
}
void insert(int i, int k, int p, int q){
if(k < 0){ latest[q] = i; return ; }
re int c = s[i] >> k & 1;
if(p) trie[q][c ^ 1] = trie[p][c ^ 1];
trie[q][c] = ++num;
insert(i, k - 1, trie[p][c], trie[q][c]);
latest[q] = max(latest[trie[q][0]], latest[trie[q][1]]);
}
int query(int now, int val, int k, int limit){
if(k < 0) return s[latest[now]] ^ val;
re int c = val >> k & 1;
if(latest[trie[now][c ^ 1]] >= limit) return query(trie[now][c ^ 1], val, k - 1, limit);
return query(trie[now][c], val, k - 1, limit);
}
char opt;
int main(){
n = read(); m = read();
root[0] = ++num; latest[0] = -1;
insert(0, 23, 0, root[0]);
for(re int i = 1; i <= n; ++i){
s[i] = s[i - 1] ^ read();
root[i] = ++num;
insert(i, 23, root[i - 1], root[i]);
}
for(re int i = 1, l, r, x; i <= m; ++i){
do opt = getchar(); while(opt != 'A' && opt != 'Q');
if(opt == 'A'){
x = read();
root[++n] = ++num;
s[n] = s[n - 1] ^ x;
insert(n, 23, root[n - 1], root[n]);
}
else{
l = read(); r = read(); x = read();
printf("%d\n", query(root[r - 1], s[n] ^ x, 23, l - 1));
}
}
return 0;
}

【洛谷 P4735】 最大异或和 (可持久化Trie)的更多相关文章

  1. 洛谷P4592 [TJOI2018]异或 【可持久化trie树】

    题目链接 BZOJ4592 题解 可持久化trie树裸题 写完就A了 #include<algorithm> #include<iostream> #include<cs ...

  2. Bzoj3261/洛谷P4735 最大异或和(可持久化Trie)

    题面 Bzoj 洛谷 题解 显然,如果让你查询整个数列的最大异或和,建一颗\(01Trie\),每给定一个\(p\),按照二进制后反方向跳就行了(比如当前二进制位为\(1\),则往\(0\)跳,反之亦 ...

  3. 洛谷 P4735 最大异或和 解题报告

    P4735 最大异或和 题目描述 给定一个非负整数序列\(\{a\}\),初始长度为\(N\). 有\(M\)个操作,有以下两种操作类型: A x:添加操作,表示在序列末尾添加一个数\(x\),序列的 ...

  4. 【题解】洛谷P4735最大异或和

    学习了一下可持久化trie的有关姿势~其实还挺好理解的,代码也短小精悍.重点在于查询某个历史版本的trie树上的某条边是否存在,同样我们转化到维护前缀和来实现.同可持久化线段树一样,我们为了节省空间继 ...

  5. [洛谷P4735]最大异或和

    题目大意:有一串初始长度为$n$的序列$a$,有两种操作: $A\;x:$在序列末尾加一个数$x$ $Q\;l\;r\;x:$找一个位置$p$,满足$l\leqslant p\leqslant r$, ...

  6. 【洛谷P4735】最大异或和

    题目大意:给定一个长度为 N 的序列,支持两个操作:在序列末尾添加一个新的数字,查询序列区间 \([l,r]\) 内使得 \(a_p\oplus a_{q+1}\oplus ... a_N\oplus ...

  7. 洛谷.5283.[十二省联考2019]异或粽子(可持久化Trie 堆)

    LOJ 洛谷 考场上都拍上了,8:50才发现我读错了题=-= 两天都读错题...醉惹... \(Solution1\) 先求一遍前缀异或和. 假设左端点是\(i\),那么我们要在\([i,n]\)中找 ...

  8. 洛谷 P3359 改造异或树

    题目描述 给定一棵n 个点的树,每条边上都有一个权值.现在按顺序删掉所有的n-1条边,每删掉一条边询问当前有多少条路径满足路径上所有边权值异或和为0. 输入输出格式 输入格式: 第一行一个整数n. 接 ...

  9. [洛谷P4592][TJOI2018]异或

    题目大意:有一棵$n$个点的树,第$i$个点权值为$w_i$,有两种操作: $1\;x\;y:$询问节点$x$的子树中与$y$异或结果的最大值 $2\;x\;y\;z:$询问路径$x$到$y$上点与$ ...

随机推荐

  1. android入门 — ListView的优化

    ListView的运行效率是比较低的,因为在getView()中每次都会将整个布局重新加载一遍,当ListView快速滚动的时候就会成为性能瓶颈. 调用View中的findViewById()方法获取 ...

  2. lintcode-178-图是否是树

    178-图是否是树 给出 n 个节点,标号分别从 0 到 n - 1 并且给出一个 无向 边的列表 (给出每条边的两个顶点), 写一个函数去判断这张`无向`图是否是一棵树 注意事项 你可以假设我们不会 ...

  3. <Effective C++>读书摘要--Implementations<二>

    <Item29> Strive for exception-safe code. 1.如下面的代码 class PrettyMenu { public: ... void changeBa ...

  4. 数论的欧拉定理证明 &amp; 欧拉函数公式(转载)

    欧拉函数 :欧拉函数是数论中很重要的一个函数,欧拉函数是指:对于一个正整数 n ,小于 n 且和 n 互质的正整数(包括 1)的个数,记作 φ(n) . 完全余数集合:定义小于 n 且和 n 互质的数 ...

  5. spring ioc经典总结

    component-scan标签默认情况下自动扫描指定路径下的包(含所有子包),将带有 @Component @Repository @Service @Controller标签的类自动注册到spri ...

  6. Redis的概述和简单使用(转载)

    文章来源:http://jingyan.baidu.com/article/db55b60996d0124ba30a2f92.html Redis是一个基于key-value的高速缓存系统,类似于me ...

  7. Java、JSP与JavaScript的区别

    java和javaScript是两种完全不同的语言,并不是收都有个java就类似 Java,全称应该是 Java Applet,是嵌在网页中,而又有自己独立的运行窗口的小程序.Java Applet ...

  8. MongoDB、ElasticSearch、Redis、HBase这四种热门数据库的优缺点及应用场景

    MongoDB MongoDB是当今最火爆的NoSQL数据库.MongoDB最早在09年发布,算得上是早期大数据时代的数据库代表作了.随着MongoDB的火爆,研发MongoDB的团队还专门成立了Mo ...

  9. Axure RP 的安装与卸载

    官网:http://www.axure.com/download 支持Windows和Mac

  10. C++面向对象编程,继承,数据抽象,动态绑定

    派生类(derived class)能够继承基类(base class )定义的成员: 1).派生类可以无需改变而使用那些与派生类具体特性不相关的操作 2).可以重新定义那些与派生类相关的成员函数,将 ...