pandas(二)函数应用和映射
NumPy的ufuncs也可以操作pandas对象
>>> frame
one two three four
a 0 1 2 3
b 4 5 6 7
c 8 9 10 11
d 12 13 14 15
>>> np.square(frame)#求平方
one two three four
a 0 1 4 9
b 16 25 36 49
c 64 81 100 121
d 144 169 196 225
>>>
用DataFrame的apply方法,可以将函数应用到由各列或行所形成的一维数组中。
>>> frame
one two three four
a 0 1 2 3
b 4 5 6 7
c 8 9 10 11
d 12 13 14 15
>>> func = lambda x : x.max()-x.min()
>>> frame.apply(func)
one 12
two 12
three 12
four 12
dtype: int64
>>> frame.apply(func,axis = 1)
a 3
b 3
c 3
d 3
dtype: int64
用DataFrame的applymap方法,可以将函数应用到元素级的数据上。
>>> f = lambda x : x+1
>>> frame
one two three four
a 0 1 2 3
b 4 5 6 7
c 8 9 10 11
d 12 13 14 15
>>> frame.applymap(f)
one two three four
a 1 2 3 4
b 5 6 7 8
c 9 10 11 12
d 13 14 15 16
Series也有一个元素级函数应用的方法map
>>> frame['one'] #获取dataframe的列为一个Series对象
a 0
b 4
c 8
d 12
Name: one, dtype: int32
>>> frame['one'].map(f)
a 1
b 5
c 9
d 13
Name: one, dtype: int64
>>>
排序和排名
用sort_index对行或列进行排序,返回一个排序好的新对象
>>> obj = Series(range(4),index=['d','b','a','c'])
>>> new_obj = obj.sort_index()
>>> new_obj
a 2
b 1
c 3
d 0
dtype: int64
>>> obj
d 0
b 1
a 2
c 3
dtype: int64
>>>
>>> new_obj = obj.sort_index(ascending = False)#默认是升序,通过参数ascending可以设置降序
>>> new_obj
d 0
c 3
b 1
a 2
dtype: int64
对于DataFrame可以根据任意轴进行排序
>>> frame = DataFrame(np.random.randn(4,4),columns = ['c','a','d','b'],index=[3,1,4,2])
>>> frame
c a d b
3 0.004950 -1.272352 1.050491 0.823530
1 1.198348 0.647114 0.154131 -0.636497
4 -0.358309 0.525307 -1.868459 0.867197
2 -0.021764 0.140501 1.459700 -0.090884
>>> frame.sort_index()
c a d b
1 1.198348 0.647114 0.154131 -0.636497
2 -0.021764 0.140501 1.459700 -0.090884
3 0.004950 -1.272352 1.050491 0.823530
4 -0.358309 0.525307 -1.868459 0.867197
>>> frame.sort_index(axis =1)
a b c d
3 -1.272352 0.823530 0.004950 1.050491
1 0.647114 -0.636497 1.198348 0.154131
4 0.525307 0.867197 -0.358309 -1.868459
2 0.140501 -0.090884 -0.021764 1.459700
除了按照索引排序之外,还可以按照值排序
按值对Series进行排序的时候,用sort_values方法。在老版本中是order方法。
>>> obj = Series([3,4,1,6])
>>> obj
0 3
1 4
2 1
3 6
dtype: int64
>>> obj.sort_values()
2 1
0 3
1 4
3 6
dtype: int64
在排序时,缺失值会默认放到末尾。
在DataFrame中,可能希望按照一个或多个列中的值进行排序
>>> frame = DataFrame({'a':[4,7,-3,2],'b':[1,0,0,1]})
>>> frame
a b
0 4 1
1 7 0
2 -3 0
3 2 1
>>> frame.sort_index(by='a')#这个方法将在不久之后废弃,可以使用sort_values方法
__main__:1: FutureWarning: by argument to sort_index is deprecated, please use .sort_values(by=...)
a b
2 -3 0
3 2 1
0 4 1
1 7 0
>>> frame.sort_values(by='a')
a b
2 -3 0
3 2 1
0 4 1
1 7 0
>>>
根据多个列排序
>>> frame.sort_values(by=['b','a'])
a b
2 -3 0
1 7 0
3 2 1
0 4 1
排名跟排序有紧密的联系,首先根据值排序,然后增设一个排名值(从1开始,直到有效值的数量。如果两个值相等,都取两个排名的均值)
>>> obj = Series([7,-5,7,4,2,0,4])
>>> obj
0 7
1 -5
2 7
3 4
4 2
5 0
6 4
dtype: int64
>>> obj.rank()
0 6.5
1 1.0
2 6.5
3 4.5
4 3.0
5 2.0
6 4.5
dtype: float64
>>>
也可以根据值在原来数据中出现的顺序,进行排名。如果某几个值相等,现在数据中出现的排名靠前,这需要借助于method选项
>>> obj.rank(method='first')
0 6.0
1 1.0
2 7.0
3 4.0
4 3.0
5 2.0
6 5.0
dtype: float64
当然也支持降序排列,ascending=False即可
dataframe对象默认按照行排名,设置轴选项axis=1,就会按照列排名
method选项的值有
| method | 说明 |
| average | 默认:在相等分组中,为各个值分配平均排名 |
| mix | 使用整个分组的最大排名 |
| min | 使用整个分组的最小排名 |
| first | 按照值在原始数据中出现的顺序分配排名 |
带有重复值的轴索引
许多pandas函数需要标签唯一,但这并不是强制性的。
可以通过索引的is_unique去判断是否唯一
>>> obj =Series(range(5),index=['a','a','b','b','c'])
>>> obj
a 0
a 1
b 2
b 3
c 4
dtype: int64
>>> obj.index.is_unique
False
带有重复值索引,数据的选取时,如果索引对应多个值,返回一个Series,否则返回单个值
>>> obj['a']
a 0
a 1
dtype: int64
>>> obj['c']
4
对于DataFrame也是如此
如果索引对应多行,返回的依然是一个dataframe对象,否则是一个Series对象
>>> df = DataFrame(np.random.randn(5,3),index=['a','a','b','b','c'])
>>> df.ix['a']
0 1 2
a -0.757846 0.713964 -0.674956
a 0.198044 1.093223 -0.342281
>>> df.ix['c']
0 -2.647372
1 -0.526367
2 -0.296859
Name: c, dtype: float64
>>> type(df.ix['a'])
<class 'pandas.core.frame.DataFrame'>
>>> type(df.ix['c'])
<class 'pandas.core.series.Series'>
pandas(二)函数应用和映射的更多相关文章
- Pandas DataFrame 函数应用和映射
apply Numpy 的ufuncs通用函数(元素级数组方法)也可用于操作pandas对象: 另一个常见的操作是,将函数应用到由各列或行所形成的一维数组上.Dataframe的apply方法即可实现 ...
- NeHe OpenGL教程 第二十二课:凹凸映射
转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线 ...
- MyBatis学习 之 二、SQL语句映射文件(2)增删改查、参数、缓存
目录(?)[-] 二SQL语句映射文件2增删改查参数缓存 select insert updatedelete sql parameters 基本类型参数 Java实体类型参数 Map参数 多参数的实 ...
- 单片机中printf函数的重映射
单片机中printf函数的重映射 一.源自于:大侠有话说 1.如果你在学习单片机之前学过C语言,那么一定知道printf这个函数.它最最好用的功能 除了打印你想要的字符到屏幕上外,还能把数字进行格式化 ...
- 【转载】pandas常用函数
原文链接:https://www.cnblogs.com/rexyan/p/7975707.html 一.import语句 import pandas as pd import numpy as np ...
- MyBatis学习 之 二、SQL语句映射文件(1)resultMap
目录(?)[-] 二SQL语句映射文件1resultMap resultMap idresult constructor association联合 使用select实现联合 使用resultMap实 ...
- Pandas的函数应用、层级索引、统计计算
1.Pandas的函数应用 1.apply 和 applymap 1. 可直接使用NumPy的函数 示例代码: # Numpy ufunc 函数 df = pd.DataFrame(np.random ...
- Spring MVC 使用介绍(六)—— 注解式控制器(二):请求映射与参数绑定
一.概述 注解式控制器支持: 请求的映射和限定 参数的自动绑定 参数的注解绑定 二.请求的映射和限定 http请求信息包含六部分信息: ①请求方法: ②URL: ③协议及版本: ④请求头信息(包括Co ...
- pandas常用函数之shift
shift函数是对数据进行移动的操作,假如现在有一个DataFrame数据df,如下所示: index value1 A 0 B 1 C 2 D 3 那么如果执行以下代码: df.shift() 就会 ...
- pandas常用函数之diff
diff函数是用来将数据进行某种移动之后与原数据进行比较得出的差异数据,举个例子,现在有一个DataFrame类型的数据df,如下: index value1 A 0 B 1 C 2 D 3 如果执行 ...
随机推荐
- 猫猫学iOS 之微博项目实战(5)微博自己定义搜索框searchBar
猫猫分享.必须精品 原创文章.欢迎转载. 转载请注明:翟乃玉的博客 地址:http://blog.csdn.net/u013357243 一:效果 用UITextField简单定义一个搜索框 二:调用 ...
- IP代理软件
IP代理软件 IP代理软件就是通过第三方网络协议传输数据的一种加密软件:跟VPN,代理服务器原理一样,是一种特殊的网络服务,允许一个网络终端(一般为客户端)通 过这个服务与另一个网络终端(一般为服务器 ...
- libubox
lbubox是openwrt的一个核心库,封装了一系列基础实用功能,主要提供事件循环,二进制格式处理,linux链表实现和一些JSON辅助处理. 它的目的是以动态链接库方式来提供可重用的通用功能,给其 ...
- UVALive 3942 Remember the Word 字典树+dp
/** 题目:UVALive 3942 Remember the Word 链接:https://vjudge.net/problem/UVALive-3942 题意:给定一个字符串(长度最多3e5) ...
- linux查杀病毒的几个思路
1. tmp 目录下面 2. 定时任务查找一下 crontab -e 3. 病毒要下载 ps -ef|egrep "curl|wget" 查看是否有下载的命令 4. top 一 ...
- word中使用MathType能做什么
在Office中写论文,特别是一些比较专业的论文需要用到各种公式的.会发现有很多地方Office自带的公式编辑器都无法完成,所以要用到MathType公式编辑器这个好用的工具了.MathType是一款 ...
- 广义高斯分布(GGD)
广义高斯分布(GGD)-Generalized Gaussian Distribution 广义高斯分布及其在图像去噪的应用_百度文库 https://wenku.baidu.com/view/2b8 ...
- [读书笔记]java核心技术
ps:有时间好好整理下格式.从别的编辑器拷贝过来啥都没了. ~~~~~~~~~~~~~~· 2.java程序设计环境 JDK 开发java使用的软件: JRE 运行java使用的软件: SE 用于桌面 ...
- 利用Fiddler或Charles进行mock数据
使用场景:服务器数据不符合测试条件时,我们可以通过在本地创建虚拟数据来打到测试用例所描述的条件. fiddler使用方法 1.首先在本地创建txt数据:将抓到的response中的json数据拷贝到记 ...
- Android开发:《Gradle Recipes for Android》阅读笔记(翻译)5.3——使用Robotium进行功能测试
问题: 你想要使用Robotium库测试activity. 解决方案: 增加Robotium依赖,编写自己的测试脚本. 讨论: Android Test Support Library提供类可以操作a ...