题目链接:https://www.luogu.org/problem/show?pid=1466

题目大意:对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合,且保证每个集合的数字和是相等的。举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,每个子集合的所有数字和是相等的:{3} 和 {1,2}.

解题思路:01背包问题,设sum是1~n之和,其实就是求用数字1~n凑出sum/2的方案数(每个数字只能用一次),概括为以下几点:

     ①sum为奇数不能平分,直接输出0。

     ②求出来的方案数要除2,因为如果有一组能平分,那么凑出sum/2的方案数就是2。

     ③状态转移方程:dp[j]=dp[j]+dp[j-i]。

代码:

 #include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=1e4+; long long dp[N]; int main(){
int n;
while(~scanf("%d",&n)){
memset(dp,,sizeof(dp));
int sum=(+n)*n/;
if(sum%==)
puts("");
else{
sum/=;
dp[]=;
for(int i=;i<=n;i++){
for(int j=sum;j>=;j--){
if(j>=i)
dp[j]+=dp[j-i];
}
}
printf("%lld\n",dp[sum]/);
}
}
return ;
}

P1466 集合 Subset Sums(01背包求填充方案数)的更多相关文章

  1. P1474 货币系统 Money Systems(完全背包求填充方案数)

    题目链接:https://www.luogu.org/problemnew/show/1474 题目大意:有V种货币,求用V种货币凑出面值N有多少种方案. 解题思路:就是完全背包问题,只是将求最大价值 ...

  2. 洛谷P1466 集合 Subset Sums

    P1466 集合 Subset Sums 162通过 308提交 题目提供者该用户不存在 标签USACO 难度普及/提高- 提交  讨论  题解 最新讨论 暂时没有讨论 题目描述 对于从1到N (1 ...

  3. DP | Luogu P1466 集合 Subset Sums

    题面:P1466 集合 Subset Sums 题解: dpsum=N*(N+1)/2;模型转化为求选若干个数,填满sum/2的空间的方案数,就是背包啦显然如果sum%2!=0是没有答案的,就特判掉F ...

  4. HDU 1171 Big Event in HDU【01背包/求两堆数分别求和以后的差最小】

    Big Event in HDU Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) T ...

  5. P1466 集合 Subset Sums 搜索+递推+背包三种做法

    题目描述 对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合,且保证每个集合的数字和是相等的.举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,每个子 ...

  6. 洛谷 P1466 集合 Subset Sums Label:DP

    题目描述 对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合,且保证每个集合的数字和是相等的.举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,每个子 ...

  7. [LUOGU] P1466 集合 Subset Sums

    题目描述 对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合,且保证每个集合的数字和是相等的.举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,每个子 ...

  8. 关于01背包求第k优解

    引用:http://szy961124.blog.163.com/blog/static/132346674201092775320970/ 求次优解.第K优解 对于求次优解.第K优解类的问题,如果相 ...

  9. 题解【洛谷 P1466 [USACO2.2]集合 Subset Sums】

    题目传送门 设 \(sum=1+2+3+4+\dots+n=\dfrac{n(n+1)}{2}\). 如果 \(2\nmid sum\),则显然没有方案. 如果 \(2\mid sum\),则这两个集 ...

随机推荐

  1. 国庆 Day1

    This is a 玄学 exam A.年轮蛋糕 最小的最大,二分首选 断环为链,check(x),x为答案,然后将每个大于x的子区间记录下来 如果有大于3个的话,那么x就可以是答案 那么·,在优化下 ...

  2. Linux服务器上nginx安装的完整步骤

    1.环境准备: 服务器系统版本:CentOS 6.5 nginx软件版本:nginx-1.13.9 2.资源准备: nginx下载地址:http://nginx.org/download/nginx- ...

  3. Hdu3579 Hello Kiki

    Hello Kiki Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  4. ubuntu10.04 安装gcc4.1.2

    After a bunch of searching to get gcc-4.1 & g++-4.1 in Ubuntu 10.10 (maverick), I found easy wor ...

  5. HDU 2686 / NYOJ 61 DP

    传纸条(一) 时间限制:2000 ms  |  内存限制:65535 KB 难度:5   描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行 ...

  6. Codeforces Round #201 (Div. 2)C,E

    数论: C. Alice and Bob time limit per test 2 seconds memory limit per test 256 megabytes input standar ...

  7. redis 查看所有键值

    zb@zb-computer:/home/wwwroot/default/lion/Admin$ /usr/local/redis/bin/redis-cli 127.0.0.1:6379> k ...

  8. Hadoop window win10 基础环境搭建(2.8.1)

    下面运行步骤除了配置文件有部分改动,其他都是参照hadoop下载解压的share/doc/index.html. hadoop下载:http://apache.opencas.org/hadoop/c ...

  9. 通过.NET客户端异步调用Web API(C#)

    在学习Web API的基础课程 Calling a Web API From a .NET Client (C#) 中,作者介绍了如何客户端调用WEB API,并给了示例代码. 但是,那些代码并不是非 ...

  10. 【洛谷 P4934】 礼物 (位运算+DP)

    题目链接 位运算+\(DP\)=状压\(DP\)?(雾 \(a\&b>=min(a,b)\)在集合的意义上就是\(a\subseteq b\) 所以对每个数的子集向子集连一条边,然后答案 ...