CountDownLatch

概述

同步辅助类,通过它可以阻塞当前线程。也就是说,能够实现一个线程或者多个线程一直等待,直到其他线程执行的操作完成。使用一个给定的计数器进行初始化,该计数器的操作是原子操作,即同时只能有一个线程操作该计数器。

调用该类await()方法的线程会一直阻塞,直到其他线程调用该类的countDown()方法,使当前计数器的值变为0为止。每次调用该类的countDown()方法,当前计数器的值就会减1。当计数器的值减为0的时候,所有因调用await()方法而处于等待状态的线程就会继续往下执行。这种操作只能出现一次,因为该类中的计数器不能被重置。如果需要一个可以重置计数次数的版本,可以考虑使用CyclicBarrier类。

CountDownLatch支持给定时间的等待,超过一定的时间不再等待,使用时只需要在await()方法中传入需要等待的时间即可。此时,await()方法的方法签名如下:

public boolean await(long timeout, TimeUnit unit)

使用场景

在某些业务场景中,程序执行需要等待某个条件完成后才能继续执行后续的操作。典型的应用为并行计算:当某个处理的运算量很大时,可以将该运算任务拆分成多个子任务,等待所有的子任务都完成之后,父任务再拿到所有子任务的运算结果进行汇总。

代码示例

调用ExecutorService类的shutdown()方法,并不会第一时间内把所有线程全部都销毁掉,而是让当前已有的线程全部执行完,之后,再把线程池销毁掉。

示例代码如下:

package io.binghe.concurrency.example.aqs;

import lombok.extern.slf4j.Slf4j;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
@Slf4j
public class CountDownLatchExample {
private static final int threadCount = 200; public static void main(String[] args) throws InterruptedException { ExecutorService exec = Executors.newCachedThreadPool();
final CountDownLatch countDownLatch = new CountDownLatch(threadCount);
for (int i = 0; i < threadCount; i++){
final int threadNum = i;
exec.execute(() -> {
try {
test(threadNum);
} catch (InterruptedException e) {
e.printStackTrace();
}finally {
countDownLatch.countDown();
}
});
}
countDownLatch.await();
log.info("finish");
exec.shutdown();
} private static void test(int threadNum) throws InterruptedException {
Thread.sleep(100);
log.info("{}", threadNum);
Thread.sleep(100);
}
}

支持给定时间等待的示例代码如下:

package io.binghe.concurrency.example.aqs;

import lombok.extern.slf4j.Slf4j;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;
@Slf4j
public class CountDownLatchExample {
private static final int threadCount = 200; public static void main(String[] args) throws InterruptedException {
ExecutorService exec = Executors.newCachedThreadPool();
final CountDownLatch countDownLatch = new CountDownLatch(threadCount);
for (int i = 0; i < threadCount; i++){
final int threadNum = i;
exec.execute(() -> {
try {
test(threadNum);
} catch (InterruptedException e) {
e.printStackTrace();
}finally {
countDownLatch.countDown();
}
});
}
countDownLatch.await(10, TimeUnit.MICROSECONDS);
log.info("finish");
exec.shutdown();
} private static void test(int threadNum) throws InterruptedException {
Thread.sleep(100);
log.info("{}", threadNum);
}
}

Semaphore

概述

控制同一时间并发线程的数目。能够完成对于信号量的控制,可以控制某个资源可被同时访问的个数。

提供了两个核心方法——acquire()方法和release()方法。acquire()方法表示获取一个许可,如果没有则等待,release()方法则是在操作完成后释放对应的许可。Semaphore维护了当前访问的个数,通过提供同步机制来控制同时访问的个数。Semaphore可以实现有限大小的链表。

使用场景

Semaphore常用于仅能提供有限访问的资源,比如:数据库连接数。

代码示例

每次获取并释放一个许可,示例代码如下:

package io.binghe.concurrency.example.aqs;

import lombok.extern.slf4j.Slf4j;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Semaphore;
@Slf4j
public class SemaphoreExample {
private static final int threadCount = 200; public static void main(String[] args) throws InterruptedException { ExecutorService exec = Executors.newCachedThreadPool();
final Semaphore semaphore = new Semaphore(3); for (int i = 0; i < threadCount; i++){
final int threadNum = i;
exec.execute(() -> {
try {
semaphore.acquire(); //获取一个许可
test(threadNum);
semaphore.release(); //释放一个许可
} catch (InterruptedException e) {
e.printStackTrace();
}
});
}
exec.shutdown();
} private static void test(int threadNum) throws InterruptedException {
log.info("{}", threadNum);
Thread.sleep(1000);
}
}

每次获取并释放多个许可,示例代码如下:

package io.binghe.concurrency.example.aqs;

import lombok.extern.slf4j.Slf4j;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Semaphore;
@Slf4j
public class SemaphoreExample {
private static final int threadCount = 200; public static void main(String[] args) throws InterruptedException { ExecutorService exec = Executors.newCachedThreadPool();
final Semaphore semaphore = new Semaphore(3); for (int i = 0; i < threadCount; i++){
final int threadNum = i;
exec.execute(() -> {
try {
semaphore.acquire(3); //获取多个许可
test(threadNum);
semaphore.release(3); //释放多个许可
} catch (InterruptedException e) {
e.printStackTrace();
}
});
}
log.info("finish");
exec.shutdown();
} private static void test(int threadNum) throws InterruptedException {
log.info("{}", threadNum);
Thread.sleep(1000);
}
}

假设有这样一个场景,并发太高了,即使使用Semaphore进行控制,处理起来也比较棘手。假设系统当前允许的最高并发数是3,超过3后就需要丢弃,使用Semaphore也能实现这样的场景,示例代码如下:

package io.binghe.concurrency.example.aqs;

import lombok.extern.slf4j.Slf4j;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Semaphore;
@Slf4j
public class SemaphoreExample {
private static final int threadCount = 200; public static void main(String[] args) throws InterruptedException { ExecutorService exec = Executors.newCachedThreadPool();
final Semaphore semaphore = new Semaphore(3); for (int i = 0; i < threadCount; i++){
final int threadNum = i;
exec.execute(() -> {
try {
//尝试获取一个许可,也可以尝试获取多个许可,
//支持尝试获取许可超时设置,超时后不再等待后续线程的执行
//具体可以参见Semaphore的源码
if (semaphore.tryAcquire()) {
test(threadNum);
semaphore.release(); //释放一个许可
}
} catch (InterruptedException e) {
e.printStackTrace();
}
});
}
log.info("finish");
exec.shutdown();
}
private static void test(int threadNum) throws InterruptedException {
log.info("{}", threadNum);
Thread.sleep(1000);
}
}

CyclicBarrier

概述

是一个同步辅助类,允许一组线程相互等待,直到到达某个公共的屏障点,通过它可以完成多个线程之间相互等待,只有当每个线程都准备就绪后,才能各自继续往下执行后面的操作。

与CountDownLatch有相似的地方,都是使用计数器实现,当某个线程调用了CyclicBarrier的await()方法后,该线程就进入了等待状态,而且计数器执行加1操作,当计数器的值达到了设置的初始值,调用await()方法进入等待状态的线程会被唤醒,继续执行各自后续的操作。CyclicBarrier在释放等待线程后可以重用,所以,CyclicBarrier又被称为循环屏障。

使用场景

可以用于多线程计算数据,最后合并计算结果的场景

CyclicBarrier与CountDownLatch的区别

  • CountDownLatch的计数器只能使用一次,而CyclicBarrier的计数器可以使用reset()方法进行重置,并且可以循环使用
  • CountDownLatch主要实现1个或n个线程需要等待其他线程完成某项操作之后,才能继续往下执行,描述的是1个或n个线程等待其他线程的关系。而CyclicBarrier主要实现了多个线程之间相互等待,直到所有的线程都满足了条件之后,才能继续执行后续的操作,描述的是各个线程内部相互等待的关系。
  • CyclicBarrier能够处理更复杂的场景,如果计算发生错误,可以重置计数器让线程重新执行一次。
  • CyclicBarrier中提供了很多有用的方法,比如:可以通过getNumberWaiting()方法获取阻塞的线程数量,通过isBroken()方法判断阻塞的线程是否被中断。

代码示例

示例代码如下。

package io.binghe.concurrency.example.aqs;

import lombok.extern.slf4j.Slf4j;
import java.util.concurrent.CyclicBarrier;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
@Slf4j
public class CyclicBarrierExample { private static CyclicBarrier cyclicBarrier = new CyclicBarrier(5); public static void main(String[] args) throws Exception {
ExecutorService executorService = Executors.newCachedThreadPool();
for (int i = 0; i < 10; i++){
final int threadNum = i;
Thread.sleep(1000);
executorService.execute(() -> {
try {
race(threadNum);
} catch (Exception e) {
e.printStackTrace();
}
});
}
executorService.shutdown();
}
private static void race(int threadNum) throws Exception{
Thread.sleep(1000);
log.info("{} is ready", threadNum);
cyclicBarrier.await();
log.info("{} continue", threadNum);
}
}

设置等待超时示例代码如下:

package io.binghe.concurrency.example.aqs;

import lombok.extern.slf4j.Slf4j;
import java.util.concurrent.*;
@Slf4j
public class CyclicBarrierExample { private static CyclicBarrier cyclicBarrier = new CyclicBarrier(5); public static void main(String[] args) throws Exception {
ExecutorService executorService = Executors.newCachedThreadPool();
for (int i = 0; i < 10; i++){
final int threadNum = i;
Thread.sleep(1000);
executorService.execute(() -> {
try {
race(threadNum);
} catch (Exception e) {
e.printStackTrace();
}
});
}
executorService.shutdown();
}
private static void race(int threadNum) throws Exception{
Thread.sleep(1000);
log.info("{} is ready", threadNum);
try{
cyclicBarrier.await(2000, TimeUnit.MILLISECONDS);
}catch (BrokenBarrierException | TimeoutException e){
log.warn("BarrierException", e);
}
log.info("{} continue", threadNum);
}
}

在声明CyclicBarrier的时候,还可以指定一个Runnable,当线程达到屏障的时候,可以优先执行Runnable中的方法。

示例代码如下:

package io.binghe.concurrency.example.aqs;

import lombok.extern.slf4j.Slf4j;
import java.util.concurrent.CyclicBarrier;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
@Slf4j
public class CyclicBarrierExample { private static CyclicBarrier cyclicBarrier = new CyclicBarrier(5, () -> {
log.info("callback is running");
}); public static void main(String[] args) throws Exception {
ExecutorService executorService = Executors.newCachedThreadPool();
for (int i = 0; i < 10; i++){
final int threadNum = i;
Thread.sleep(1000);
executorService.execute(() -> {
try {
race(threadNum);
} catch (Exception e) {
e.printStackTrace();
}
});
}
executorService.shutdown();
}
private static void race(int threadNum) throws Exception{
Thread.sleep(1000);
log.info("{} is ready", threadNum);
cyclicBarrier.await();
log.info("{} continue", threadNum);
}
}

【高并发】AQS中的CountDownLatch、Semaphore与CyclicBarrier用法总结的更多相关文章

  1. Java高并发--AQS

    Java高并发--AQS 主要是学习慕课网实战视频<Java并发编程入门与高并发面试>的笔记 AQS是AbstractQueuedSynchronizer的简称,直译过来是抽象队列同步器. ...

  2. 如何在高并发分布式系统中生成全局唯一Id

    月整理出来,有兴趣的园友可以关注下我的博客. 分享原由,最近公司用到,并且在找最合适的方案,希望大家多参与讨论和提出新方案.我和我的小伙伴们也讨论了这个主题,我受益匪浅啊…… 博文示例: 1.     ...

  3. 如何在高并发分布式系统中生成全局唯一Id(转)

    http://www.cnblogs.com/heyuquan/p/global-guid-identity-maxId.html 又一个多月没冒泡了,其实最近学了些东西,但是没有安排时间整理成博文, ...

  4. 高并发应用中客户端等待、响应时间的推算,及RT/QPS概念辨析

    高并发应用中客户端等待.响应时间的推算,及RT/QPS概念辨析 对于一个网站,已知服务端的服务线程数和处理单个请求所需的时间时,该如何算出高并发时用户从点击链接到收到响应的时间?注意这个时间并不等于服 ...

  5. (转)如何在高并发分布式系统中生成全局唯一Id

    又一个多月没冒泡了,其实最近学了些东西,但是没有安排时间整理成博文,后续再奉上.最近还写了一个发邮件的组件以及性能测试请看 <NET开发邮件发送功能的全面教程(含邮件组件源码)> ,还弄了 ...

  6. 高并发分布式系统中生成全局唯一(订单号)Id js返回上一页并刷新、返回上一页、自动刷新页面 父页面操作嵌套iframe子页面的HTML标签元素 .net判断System.Data.DataRow中是否包含某列 .Net使用system.Security.Cryptography.RNGCryptoServiceProvider类与System.Random类生成随机数

    高并发分布式系统中生成全局唯一(订单号)Id   1.GUID数据因毫无规律可言造成索引效率低下,影响了系统的性能,那么通过组合的方式,保留GUID的10个字节,用另6个字节表示GUID生成的时间(D ...

  7. 并发编程 04——闭锁CountDownLatch 与 栅栏CyclicBarrier

    Java并发编程实践 目录 并发编程 01—— ThreadLocal 并发编程 02—— ConcurrentHashMap 并发编程 03—— 阻塞队列和生产者-消费者模式 并发编程 04—— 闭 ...

  8. ql Server 高频,高并发访问中的键查找死锁解析

    死锁对于DBA或是数据库开发人员而言并不陌生,它的引发多种多样,一般而言,数据库应用的开发者在设计时都会有一定的考量进而尽量避免死锁的产生.但有时因为一些特殊应用场景如高频查询,高并发查询下由于数据库 ...

  9. Sql Server 高频,高并发访问中的键查找死锁解析

    死锁对于DBA或是数据库开发人员而言并不陌生,它的引发多种多样,一般而言,数据库应用的开发者在设计时都会有一定的考量进而尽量避免死锁的产生.但有时因为一些特殊应用场景如高频查询,高并发查询下由于数据库 ...

  10. Java 并发编程中的 CountDownLatch 锁用于多个线程同时开始运行或主线程等待子线程结束

    Java 5 开始引入的 Concurrent 并发软件包里面的 CountDownLatch 其实可以把它看作一个计数器,只不过这个计数器的操作是原子操作,同时只能有一个线程去操作这个计数器,也就是 ...

随机推荐

  1. Nginx配置-1

    1.绑定nginx到指定cpu [root@nginx conf.d]# vim /apps/nginx/conf/nginx.conf worker_processes 2; worker_cpu_ ...

  2. 【JVM】关于JVM,你需要掌握这些 | 一文彻底吃透JVM系列

    写在前面 最近,一直有小伙伴让我整理下关于JVM的知识,经过十几天的收集与整理,初版算是整理出来了.希望对大家有所帮助. JDK 是什么? JDK 是用于支持 Java 程序开发的最小环境. Java ...

  3. springboot滚动分页展示列表(类似layui瀑布流效果)

    背景: 公司项目要求获取用户关联的好友列表,要求分页查询,十条数据一页,滚动页面是点击加载更多,显示下一页列表. ​ 示例图: 实现: 本项目采用的前端模板是freemaker,主要前端页面代码(没有 ...

  4. 2022春每日一题:Day 12

    题目:[SDOI2006]线性方程组 显然,高斯消元模板题 代码: #include <cstdio> #include <cstdlib> #include <cstr ...

  5. .NET刷算法

    BFS模板-宽度优先搜索(Breadth First Search) 1.模板 /// <summary> /// BFS遍历 /// </summary> /// <p ...

  6. day23 约束 & 锁 & 范式

    考点: 乐观锁=>悲观锁=>锁 表与表的对应关系 一对一:学生与手机号,一个学生对一个手机号 一对多:班级与学生,一个班级对应多个学生 多对一: 多对多:学生与科目,一个学生对应多个科目, ...

  7. Kafka Connect学习

    一.基础介绍 1.概念 2.Debezium 为捕获数据更改(change data capture,CDC)提供了一个低延迟的流式处理平台.可以消费数据库每一个行级别(row-level)的更改. ...

  8. 这玩意也太猛了!朋友们,我在此严正呼吁大家:端好饭碗,谨防 AI!

    你好呀,我是歪歪. 最近几天大火的 ChatGPT 你玩了吗? 如果你不知道它是个什么东西,那么我让它给你来个自我介绍: 说白了,就是一个可以对话的人工智能. 我开始以为就是一个升级版的"小 ...

  9. ArcObjects SDK开发 013 MapFrame

    1.如何获取MapFrame 打开一个Mxd文件,可能包含一个或多个Map,每个Map都会放到一个MapFrame中,加载到PageLayout上.我们可以通过PageLayout继承的IGraphi ...

  10. 搭建漏洞环境及实战——搭建SQL注入平台

    Sqli-lab是一款学习SQL注入的开源平台,共有75种不同类型的注入,复制源码然后将其粘贴到网站的目录中,进入MySQL管理中的PHPMyAdmin,打开http://127.0.0.1/phpM ...