论文解读(VGAE)《Variational Graph Auto-Encoders》
Paper Information
Title:Variational Graph Auto-Encoders
Authors:Thomas Kipf, M. Welling
Soures:2016, ArXiv
Others:1214 Citations, 14 References
1 A latent variable model for graph-structured data
VGAE 使用了一个 GCN encoder 和 一个简单的内积 decoder ,架构如下图所示:
Definitions:We are given an undirected, unweighted graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ with $N=|\mathcal{V}|$ nodes. We introduce an adjacency matrix $\mathbf{A}$ of $\mathcal{G}$ (we assume diagonal elements set to $1$ , i.e. every node is connected to itself) and its degree matrix $\mathbf{D}$ . We further introduce stochastic latent variables $\mathbf{z}_{i}$ , summarized in an $N \times F$ matrix $\mathbf{Z}$ . Node features are summarized in an $N \times D$ matrix $\mathbf{X}$ .
Inference model:使用一个两层的 GCN 推理模型
$q(\mathbf{Z} \mid \mathbf{X}, \mathbf{A})=\prod_{i=1}^{N} q\left(\mathbf{z}_{i} \mid \mathbf{X}, \mathbf{A}\right) \text { with } \quad q\left(\mathbf{z}_{i} \mid \mathbf{X}, \mathbf{A}\right)=\mathcal{N}\left(\mathbf{z}_{i} \mid \boldsymbol{\mu}_{i}, \operatorname{diag}\left(\boldsymbol{\sigma}_{i}^{2}\right)\right)$
其中:
- $\boldsymbol{\mu}=\operatorname{GCN}_{\boldsymbol{\mu}}(\mathbf{X}, \mathbf{A})$ is the matrix of mean vectors $\boldsymbol{\mu}_{i} $;
- $\log \boldsymbol{\sigma}=\mathrm{GCN}_{\boldsymbol{\sigma}}(\mathbf{X}, \mathbf{A})$;
def encode(self, x, adj):
hidden1 = self.gc1(x, adj)
return self.gc2(hidden1, adj), self.gc3(hidden1, adj) mu, logvar = self.encode(x, adj)
GCN 的第二层分别输出 mu,log $\sigma$ 矩阵,共用第一层的参数。
这里 GCN 定义为:
$\operatorname{GCN}(\mathbf{X}, \mathbf{A})=\tilde{\mathbf{A}} \operatorname{ReLU}\left(\tilde{\mathbf{A}} \mathbf{X} \mathbf{W}_{0}\right) \mathbf{W}_{1}$
其中:
- $\mathbf{W}_{i}$ 代表着权重矩阵
- $\operatorname{GCN}_{\boldsymbol{\mu}}(\mathbf{X}, \mathbf{A})$ 和 $\mathrm{GCN}_{\boldsymbol{\sigma}}(\mathbf{X}, \mathbf{A})$ 共享第一层的权重矩阵 $\mathbf{W}_{0} $
- $\operatorname{ReLU}(\cdot)=\max (0, \cdot)$
- $\tilde{\mathbf{A}}=\mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}}$ 代表着 symmetrically normalized adjacency matrix
至于 $z$ 的生成:
def reparameterize(self, mu, logvar):
if self.training:
std = torch.exp(logvar)
eps = torch.randn_like(std)
return eps.mul(std).add_(mu)
else:
return mu z = self.reparameterize(mu, logvar)
Generative model:我们的生成模型是由潜在变量之间的内积给出的:
$p(\mathbf{A} \mid \mathbf{Z})=\prod_{i=1}^{N} \prod_{j=1}^{N} p\left(A_{i j} \mid \mathbf{z}_{i}, \mathbf{z}_{j}\right) \text { with } p\left(A_{i j}=1 \mid \mathbf{z}_{i}, \mathbf{z}_{j}\right)=\sigma\left(\mathbf{z}_{i}^{\top} \mathbf{z}_{j}\right)$
其中:
- $\mathbf{A}$ 是邻接矩阵
- $\sigma(\cdot)$ 是 logistic sigmoid function.
class InnerProductDecoder(nn.Module):
"""Decoder for using inner product for prediction.""" def __init__(self, dropout, act=torch.sigmoid):
super(InnerProductDecoder, self).__init__()
self.dropout = dropout
self.act = act def forward(self, z):
z = F.dropout(z, self.dropout, training=self.training)
adj = self.act(torch.mm(z, z.t()))
return adj self.dc = InnerProductDecoder(dropout, act=lambda x: x) adj = self.dc(z)
Learning:优化变分下界 $\mathcal{L}$ 的参数 $W_i$ :
$\mathcal{L}=\mathbb{E}_{q(\mathbf{Z} \mid \mathbf{X}, \mathbf{A})}[\log p(\mathbf{A} \mid \mathbf{Z})]-\mathrm{KL}[q(\mathbf{Z} \mid \mathbf{X}, \mathbf{A}) \| p(\mathbf{Z})]$
其中:
- $\operatorname{KL}[q(\cdot) \| p(\cdot)]$ 代表着 $q(\cdot)$ 和 $p(\cdot)$ 之间的 KL散度。
- 高斯先验 $p(\mathbf{Z})=\prod_{i} p\left(\mathbf{z}_{\mathbf{i}}\right)=\prod_{i} \mathcal{N}\left(\mathbf{z}_{i} \mid 0, \mathbf{I}\right)$
Non-probabilistic graph auto-encoder (GAE) model
计算表示向量 $Z$ 和重建的邻接矩阵 $\hat{\mathbf{A}}$
$\hat{\mathbf{A}}=\sigma\left(\mathbf{Z Z}^{\top}\right), \text { with } \quad \mathbf{Z}=\operatorname{GCN}(\mathbf{X}, \mathbf{A})$
2 Experiments on link prediction
引文网络中链接预测任务的结果如 Table 1 所示。
GAE* and VGAE* denote experiments without using input features, GAE and VGAE use input features.
论文解读(VGAE)《Variational Graph Auto-Encoders》的更多相关文章
- 论文解读《Bilinear Graph Neural Network with Neighbor Interactions》
论文信息 论文标题:Bilinear Graph Neural Network with Neighbor Interactions论文作者:Hongmin Zhu, Fuli Feng, Xiang ...
- 论文解读《Cauchy Graph Embedding》
Paper Information Title:Cauchy Graph EmbeddingAuthors:Dijun Luo, C. Ding, F. Nie, Heng HuangSources: ...
- 论文解读(GraphMAE)《GraphMAE: Self-Supervised Masked Graph Autoencoders》
论文信息 论文标题:GraphMAE: Self-Supervised Masked Graph Autoencoders论文作者:Zhenyu Hou, Xiao Liu, Yukuo Cen, Y ...
- 论文解读(KP-GNN)《How Powerful are K-hop Message Passing Graph Neural Networks》
论文信息 论文标题:How Powerful are K-hop Message Passing Graph Neural Networks论文作者:Jiarui Feng, Yixin Chen, ...
- 论文解读(SR-GNN)《Shift-Robust GNNs: Overcoming the Limitations of Localized Graph Training Data》
论文信息 论文标题:Shift-Robust GNNs: Overcoming the Limitations of Localized Graph Training Data论文作者:Qi Zhu, ...
- 论文解读(LG2AR)《Learning Graph Augmentations to Learn Graph Representations》
论文信息 论文标题:Learning Graph Augmentations to Learn Graph Representations论文作者:Kaveh Hassani, Amir Hosein ...
- 论文解读(GCC)《Efficient Graph Convolution for Joint Node RepresentationLearning and Clustering》
论文信息 论文标题:Efficient Graph Convolution for Joint Node RepresentationLearning and Clustering论文作者:Chaki ...
- 论文解读(AGC)《Attributed Graph Clustering via Adaptive Graph Convolution》
论文信息 论文标题:Attributed Graph Clustering via Adaptive Graph Convolution论文作者:Xiaotong Zhang, Han Liu, Qi ...
- 论文解读(DGI)《DEEP GRAPH INFOMAX》
论文标题:DEEP GRAPH INFOMAX 论文方向:图像领域 论文来源:2019 ICLR 论文链接:https://arxiv.org/abs/1809.10341 论文代码:https:// ...
随机推荐
- python的namespace的理解
Python命名空间的本质 python中的名称空间是名称(标识符)到对象的映射. 具体来说,python为模块.函数.类.对象保存一个字典(__dict__),里面就是重名称到对象的映射. -- ...
- Ubuntu20.04.3中telnet 127.0.0.1时Unable to connect to remote host: Connection refused
本博客旨在自我学习使用,如有任何疑问请及时联系博主 今天遇到个稀奇古怪的问题: 调试emqx的时候一直econnrefused,检查服务时,突然发现在ubuntu上telnet localhost竟然 ...
- 前端提交数据到node的N种方式
写在前面 本篇介绍了前端提交数据给node的几种处理方式,从最基本的get和post请求,到图片上传,再到分块上传,由浅入深. GET请求 经典的get提交数据,参数通过URL传递给node,node ...
- 基于containerd二进制部署k8s-v1.23.3
文章目录 前言 k8s 组件 环境准备 创建目录 关闭防火墙 关闭selinux 关闭swap 开启内核模块 分发到所有节点 启用systemd自动加载模块服务 配置系统参数 分发到所有节点 加载系统 ...
- 李宏毅机器学习笔记——新手感悟——PM2.5作业
python也不会,计算机也不会,啥都不会,只带了个脑子考了计算机研究生.研究生选了人工智能方向.看来注定是漫长的学习之旅. PM2.5作业,我是一个字都看不懂.所以我采用了直接看答案的方案.把答案看 ...
- Spring Cloud Gateway现高风险漏洞,建议采取措施加强防护
大家好,我是DD 3月1日,Spring官方博客发布了一篇关于Spring Cloud Gateway的CVE报告. 其中包含一个高风险漏洞和一个中风险漏洞,建议有使用Spring Cloud Gat ...
- BI工具做数据可视化项目频频失败的原因
现如今数据可视化可谓是非常之火,随着硬件价格的一降再降,仿佛做数据可视化项目,你没有数据大屏,你就没有逼格.理想很丰满,现实很骨感,并不是每一个数据可视化项目都能够成功.数据可视化项目的进行,无外乎是 ...
- win7下安装Hadoop
1 下载准备 下载hadoop,官网用一个快一点的镜像,使用迅雷加速下载,二进制格式,解压目录:E:\hadoop\hadoop-2.9.2 下载winutils,这个是别人编译好的hadoop的wi ...
- C# $的简介
无意中看到这个$格式字符串,然后学习一下.$是C#6.0的新特性. 比如我们以前是这么做的,内插字符串. var anInt = 1; var aBool = true; var aString = ...
- 抛弃模板,一种Prompt Learning用于命名实体识别任务的新范式
原创作者 | 王翔 论文名称: Template-free Prompt Tuning for Few-shot NER 文献链接: https://arxiv.org/abs/2109.13532 ...