Paper Information

Title:Variational Graph Auto-Encoders
Authors:Thomas Kipf, M. Welling
Soures:2016, ArXiv
Others:1214 Citations, 14 References

1 A latent variable model for graph-structured data

  VGAE 使用了一个 GCN encoder 和 一个简单的内积 decoder ,架构如下图所示:

  

  Definitions:We are given an undirected, unweighted graph  $\mathcal{G}=(\mathcal{V}, \mathcal{E})$  with  $N=|\mathcal{V}|$  nodes. We introduce an adjacency matrix  $\mathbf{A}$  of  $\mathcal{G}$  (we assume diagonal elements set to $1$ , i.e. every node is connected to itself) and its degree matrix  $\mathbf{D}$ . We further introduce stochastic latent variables  $\mathbf{z}_{i}$ , summarized in an  $N \times F$  matrix  $\mathbf{Z}$ . Node features are summarized in an  $N \times D$  matrix  $\mathbf{X}$ .

  Inference model:使用一个两层的 GCN 推理模型

    $q(\mathbf{Z} \mid \mathbf{X}, \mathbf{A})=\prod_{i=1}^{N} q\left(\mathbf{z}_{i} \mid \mathbf{X}, \mathbf{A}\right) \text { with } \quad q\left(\mathbf{z}_{i} \mid \mathbf{X}, \mathbf{A}\right)=\mathcal{N}\left(\mathbf{z}_{i} \mid \boldsymbol{\mu}_{i}, \operatorname{diag}\left(\boldsymbol{\sigma}_{i}^{2}\right)\right)$

  其中:

    • $\boldsymbol{\mu}=\operatorname{GCN}_{\boldsymbol{\mu}}(\mathbf{X}, \mathbf{A})$  is the matrix of mean vectors  $\boldsymbol{\mu}_{i} $; 
    • $\log \boldsymbol{\sigma}=\mathrm{GCN}_{\boldsymbol{\sigma}}(\mathbf{X}, \mathbf{A})$; 
def encode(self, x, adj):
hidden1 = self.gc1(x, adj)
return self.gc2(hidden1, adj), self.gc3(hidden1, adj) mu, logvar = self.encode(x, adj)

  GCN 的第二层分别输出 mu,log $\sigma$ 矩阵,共用第一层的参数。

  这里 GCN 定义为:
    $\operatorname{GCN}(\mathbf{X}, \mathbf{A})=\tilde{\mathbf{A}} \operatorname{ReLU}\left(\tilde{\mathbf{A}} \mathbf{X} \mathbf{W}_{0}\right) \mathbf{W}_{1}$

  其中:

    • $\mathbf{W}_{i}$ 代表着权重矩阵
    • $\operatorname{GCN}_{\boldsymbol{\mu}}(\mathbf{X}, \mathbf{A})$ 和 $\mathrm{GCN}_{\boldsymbol{\sigma}}(\mathbf{X}, \mathbf{A})$ 共享第一层的权重矩阵 $\mathbf{W}_{0} $
    • $\operatorname{ReLU}(\cdot)=\max (0, \cdot)$
    • $\tilde{\mathbf{A}}=\mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}}$ 代表着  symmetrically normalized adjacency matrix

  至于 $z$ 的生成:

def reparameterize(self, mu, logvar):
if self.training:
std = torch.exp(logvar)
eps = torch.randn_like(std)
return eps.mul(std).add_(mu)
else:
return mu z = self.reparameterize(mu, logvar)

  Generative model:我们的生成模型是由潜在变量之间的内积给出的:

    $p(\mathbf{A} \mid \mathbf{Z})=\prod_{i=1}^{N} \prod_{j=1}^{N} p\left(A_{i j} \mid \mathbf{z}_{i}, \mathbf{z}_{j}\right) \text { with } p\left(A_{i j}=1 \mid \mathbf{z}_{i}, \mathbf{z}_{j}\right)=\sigma\left(\mathbf{z}_{i}^{\top} \mathbf{z}_{j}\right)$

  其中:

    • $\mathbf{A}$ 是邻接矩阵   
    • $\sigma(\cdot)$ 是 logistic sigmoid function.  
class InnerProductDecoder(nn.Module):
"""Decoder for using inner product for prediction.""" def __init__(self, dropout, act=torch.sigmoid):
super(InnerProductDecoder, self).__init__()
self.dropout = dropout
self.act = act def forward(self, z):
z = F.dropout(z, self.dropout, training=self.training)
adj = self.act(torch.mm(z, z.t()))
return adj self.dc = InnerProductDecoder(dropout, act=lambda x: x) adj = self.dc(z)

  Learning:优化变分下界 $\mathcal{L}$ 的参数 $W_i$ :

    $\mathcal{L}=\mathbb{E}_{q(\mathbf{Z} \mid \mathbf{X}, \mathbf{A})}[\log p(\mathbf{A} \mid \mathbf{Z})]-\mathrm{KL}[q(\mathbf{Z} \mid \mathbf{X}, \mathbf{A}) \| p(\mathbf{Z})]$

  其中:

    • $\operatorname{KL}[q(\cdot) \| p(\cdot)]$ 代表着 $q(\cdot)$  和  $p(\cdot)$ 之间的 KL散度。  
    • 高斯先验 $p(\mathbf{Z})=\prod_{i} p\left(\mathbf{z}_{\mathbf{i}}\right)=\prod_{i} \mathcal{N}\left(\mathbf{z}_{i} \mid 0, \mathbf{I}\right)$  

   Non-probabilistic graph auto-encoder (GAE) model

  计算表示向量 $Z$ 和重建的邻接矩阵 $\hat{\mathbf{A}}$

    $\hat{\mathbf{A}}=\sigma\left(\mathbf{Z Z}^{\top}\right), \text { with } \quad \mathbf{Z}=\operatorname{GCN}(\mathbf{X}, \mathbf{A})$

2 Experiments on link prediction

  引文网络中链接预测任务的结果如 Table 1 所示。

  

  GAE* and VGAE* denote experiments without using input features, GAE and VGAE use input features.

论文解读(VGAE)《Variational Graph Auto-Encoders》的更多相关文章

  1. 论文解读《Bilinear Graph Neural Network with Neighbor Interactions》

    论文信息 论文标题:Bilinear Graph Neural Network with Neighbor Interactions论文作者:Hongmin Zhu, Fuli Feng, Xiang ...

  2. 论文解读《Cauchy Graph Embedding》

    Paper Information Title:Cauchy Graph EmbeddingAuthors:Dijun Luo, C. Ding, F. Nie, Heng HuangSources: ...

  3. 论文解读(GraphMAE)《GraphMAE: Self-Supervised Masked Graph Autoencoders》

    论文信息 论文标题:GraphMAE: Self-Supervised Masked Graph Autoencoders论文作者:Zhenyu Hou, Xiao Liu, Yukuo Cen, Y ...

  4. 论文解读(KP-GNN)《How Powerful are K-hop Message Passing Graph Neural Networks》

    论文信息 论文标题:How Powerful are K-hop Message Passing Graph Neural Networks论文作者:Jiarui Feng, Yixin Chen, ...

  5. 论文解读(SR-GNN)《Shift-Robust GNNs: Overcoming the Limitations of Localized Graph Training Data》

    论文信息 论文标题:Shift-Robust GNNs: Overcoming the Limitations of Localized Graph Training Data论文作者:Qi Zhu, ...

  6. 论文解读(LG2AR)《Learning Graph Augmentations to Learn Graph Representations》

    论文信息 论文标题:Learning Graph Augmentations to Learn Graph Representations论文作者:Kaveh Hassani, Amir Hosein ...

  7. 论文解读(GCC)《Efficient Graph Convolution for Joint Node RepresentationLearning and Clustering》

    论文信息 论文标题:Efficient Graph Convolution for Joint Node RepresentationLearning and Clustering论文作者:Chaki ...

  8. 论文解读(AGC)《Attributed Graph Clustering via Adaptive Graph Convolution》

    论文信息 论文标题:Attributed Graph Clustering via Adaptive Graph Convolution论文作者:Xiaotong Zhang, Han Liu, Qi ...

  9. 论文解读(DGI)《DEEP GRAPH INFOMAX》

    论文标题:DEEP GRAPH INFOMAX 论文方向:图像领域 论文来源:2019 ICLR 论文链接:https://arxiv.org/abs/1809.10341 论文代码:https:// ...

随机推荐

  1. Linux中使用systemctl操作服务、新建自定义服务

    Linux有12种Unit,对于个人来讲,用的最多的是Service Unit,下面的Unit均指Service Unit(服务单元) # 启动Unit systemctl start appname ...

  2. SQL代码规范

    1.  建表规约 1)   表中字段名称 a)    表达是否概念的字段,必须使用is_xxx的方式命名,数据类型是bit b)    小数类型为decimal,禁止使用float和double. 说 ...

  3. 基于Oracle数据库登陆界面及功能实现 Java版

    首先要在Oracle数据库创建表文件,包括建立表头以及关键字(唯一标识符),此次程序所用的表名称为SW_USER_INFO,表头有UNAME.UKEY.USEX等,关键字为UCC,然后添加一条记录,用 ...

  4. RadonDB MySQL on K8s 2.1.2 发布!

    RadonDB MySQL on Kubernetes 于 2 月 17 日发布了新版本 2.1.2 .该版本在节点的重建.增删等方面进行了全面升级. 致谢: 首先感谢 @andyli029 @ace ...

  5. Django视图与模板(6)

    前面记到数据库与模型(models)有联系,现在记录一下视图与模板,他们两个也有联系. 个人理解:视图就好像一个cpu,比较核心,就是用来处理问题的,又叫业务逻辑处理,他把处理完的结果插入到模板里面, ...

  6. Java高性能本地缓存框架Caffeine

    一.序言 Caffeine是一个进程内部缓存框架,使用了Java 8最新的[StampedLock]乐观锁技术,极大提高缓存并发吞吐量,一个高性能的 Java 缓存库,被称为最快缓存. 二.缓存简介 ...

  7. Go1.14版本vendor和gomodule冲突问题

    Go1.14版本vendor和gomodule冲突问题 go1.14版本使用go mod tidy构建依赖时会出现问题(见链接), 这个问题在go1.12版本是不会出现的. https://githu ...

  8. 激活visio pro 2019

    内容来源:http://www.yishimei.cn/catalog.asp?page=2 1.必须彻底关闭windows defender 防火墙 :光笔防火墙的教程:https://www.cn ...

  9. Invoke and BeginInvoke

    原博客地址:http://www.cnblogs.com/worldreason/archive/2008/06/09/1216127.html 写的真的很好! 在Invoke或者BeginInvok ...

  10. JSP文件的上传

    JSP 文件上传 JSP 可以与 HTML form 标签一起使用,来允许用户上传文件到服务器.上传的文件可以是文本文件或图像文件或任何文档. 本章节我们使用 Servlet 来处理文件上传,使用到的 ...