Mask RCNN 是作者 Kaiming He2018 年发表的论文

ROI Pooling 和 ROI Align 的区别

Understanding Region of Interest — (RoI Align and RoI Warp)

Mask R-CNN 网络结构

Mask RCNN 继承自 Faster RCNN 主要有三个改进:

  • feature map 的提取采用了 FPN 的多尺度特征网络
  • ROI Pooling 改进为 ROI Align
  • RPN 后面,增加了采用 FCN 结构的 mask 分割分支

网络结构如下图所示:

可以看出,Mask RCNN 是一种先检测物体,再分割的思路,简单直接,在建模上也更有利于网络的学习。

骨干网络 FPN

卷积网络的一个重要特征:深层网络容易响应语义特征,浅层网络容易响应图像特征。Mask RCNN 的使用了 ResNetFPN 结合的网络作为特征提取器。

FPN 的代码出现在 ./mrcnn/model.py中,核心代码如下:

if callable(config.BACKBONE):
_, C2, C3, C4, C5 = config.BACKBONE(input_image, stage5=True,
train_bn=config.TRAIN_BN)
else:
_, C2, C3, C4, C5 = resnet_graph(input_image, config.BACKBONE,
stage5=True, train_bn=config.TRAIN_BN)
# Top-down Layers
# TODO: add assert to varify feature map sizes match what's in config
P5 = KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c5p5')(C5)
P4 = KL.Add(name="fpn_p4add")([
KL.UpSampling2D(size=(2, 2), name="fpn_p5upsampled")(P5),
KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c4p4')(C4)])
P3 = KL.Add(name="fpn_p3add")([
KL.UpSampling2D(size=(2, 2), name="fpn_p4upsampled")(P4),
KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c3p3')(C3)])
P2 = KL.Add(name="fpn_p2add")([
KL.UpSampling2D(size=(2, 2), name="fpn_p3upsampled")(P3),
KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c2p2')(C2)])
# Attach 3x3 conv to all P layers to get the final feature maps.
P2 = KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p2")(P2)
P3 = KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p3")(P3)
P4 = KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p4")(P4)
P5 = KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p5")(P5)
# P6 is used for the 5th anchor scale in RPN. Generated by
# subsampling from P5 with stride of 2.
P6 = KL.MaxPooling2D(pool_size=(1, 1), strides=2, name="fpn_p6")(P5) # Note that P6 is used in RPN, but not in the classifier heads.
rpn_feature_maps = [P2, P3, P4, P5, P6]
mrcnn_feature_maps = [P2, P3, P4, P5]

其中 resnet_graph 函数定义如下:

def resnet_graph(input_image, architecture, stage5=False, train_bn=True):
"""Build a ResNet graph.
architecture: Can be resnet50 or resnet101
stage5: Boolean. If False, stage5 of the network is not created
train_bn: Boolean. Train or freeze Batch Norm layers
"""
assert architecture in ["resnet50", "resnet101"]
# Stage 1
x = KL.ZeroPadding2D((3, 3))(input_image)
x = KL.Conv2D(64, (7, 7), strides=(2, 2), name='conv1', use_bias=True)(x)
x = BatchNorm(name='bn_conv1')(x, training=train_bn)
x = KL.Activation('relu')(x)
C1 = x = KL.MaxPooling2D((3, 3), strides=(2, 2), padding="same")(x)
# Stage 2
x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1), train_bn=train_bn)
x = identity_block(x, 3, [64, 64, 256], stage=2, block='b', train_bn=train_bn)
C2 = x = identity_block(x, 3, [64, 64, 256], stage=2, block='c', train_bn=train_bn)
# Stage 3
x = conv_block(x, 3, [128, 128, 512], stage=3, block='a', train_bn=train_bn)
x = identity_block(x, 3, [128, 128, 512], stage=3, block='b', train_bn=train_bn)
x = identity_block(x, 3, [128, 128, 512], stage=3, block='c', train_bn=train_bn)
C3 = x = identity_block(x, 3, [128, 128, 512], stage=3, block='d', train_bn=train_bn)
# Stage 4
x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a', train_bn=train_bn)
block_count = {"resnet50": 5, "resnet101": 22}[architecture]
for i in range(block_count):
x = identity_block(x, 3, [256, 256, 1024], stage=4, block=chr(98 + i), train_bn=train_bn)
C4 = x
# Stage 5
if stage5:
x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a', train_bn=train_bn)
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b', train_bn=train_bn)
C5 = x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c', train_bn=train_bn)
else:
C5 = None
return [C1, C2, C3, C4, C5]

anchor 锚框生成规则

在 Faster-RCNN 中可以将 SCALE 也可以设置为多个值,而在 Mask RCNN 中则是每一特征层只对应着一个SCALE 即对应着上述所设置的 16。

实验

何凯明在论文中做了很多对比单个模块试验,并放出了对比结果表格。

从上图表格可以看出:

  • sigmoidsoftmax 对比,sigmoid 有不小提升;
  • 特征网络选择:可以看出更深的网络和采用 FPN 的实验效果更好,可能因为 FPN 综合考虑了不同尺寸的 feature map 的信息,因此能够把握一些更精细的细节。
  • RoI AlignRoI Pooling 对比:在 instance segmentation 和 object detection 上都有不小的提升。这样看来,RoIAlign 其实就是一个更加精准的 RoIPooling,把前者放到 Faster RCNN 中,对结果的提升应该也会有帮助。

参考资料

Mask R-CNN 论文

二阶段目标检测网络-Mask RCNN 详解的更多相关文章

  1. (二)目标检测算法之R-CNN

    系列博客链接: (一)目标检测概述 https://www.cnblogs.com/kongweisi/p/10894415.html 概述: 1.目标检测-Overfeat模型 2.目标检测-R-C ...

  2. 第三十五节,目标检测之YOLO算法详解

    Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object de ...

  3. 【转】目标检测之YOLO系列详解

    本文逐步介绍YOLO v1~v3的设计历程. YOLOv1基本思想 YOLO将输入图像分成SxS个格子,若某个物体 Ground truth 的中心位置的坐标落入到某个格子,那么这个格子就负责检测出这 ...

  4. 物体检测丨Faster R-CNN详解

    这篇文章把Faster R-CNN的原理和实现阐述得非常清楚,于是我在读的时候顺便把他翻译成了中文,如果有错误的地方请大家指出. 原文:http://www.telesens.co/2018/03/1 ...

  5. Mask R-CNN详解和安装

    Detectron是Facebook的物体检测平台,今天宣布开源,它基于Caffe2,用Python写成,这次开放的代码中就包含了Mask R-CNN的实现. 除此之外,Detectron还包含了IC ...

  6. 目标检测 1 : 目标检测中的Anchor详解

    咸鱼了半年,年底了,把这半年做的关于目标的检测的内容总结下. 本文主要有两部分: 目标检测中的边框表示 Anchor相关的问题,R-CNN,SSD,YOLO 中的anchor 目标检测中的边框表示 目 ...

  7. 目标检测:SSD算法详解

    一些概念   True    Predict  True postive False postive  预测为正类 False negivate True negivate  预测为负类    真实为 ...

  8. 第二十九节,目标检测算法之R-CNN算法详解

    Girshick, Ross, et al. “Rich feature hierarchies for accurate object detection and semantic segmenta ...

  9. 目标检测(三) Fast R-CNN

    引言 之前学习了 R-CNN 和 SPPNet,这里做一下回顾和补充. 问题 R-CNN 需要对输入进行resize变换,在对大量 ROI 进行特征提取时,需要进行卷积计算,而且由于 ROI 存在重复 ...

  10. 目标检测算法Faster R-CNN

    一:Faster-R-CNN算法组成: 1.PRN候选框提取模块: 2.Fast R-CNN检测模块. 二:Faster-R-CNN框架介绍 三:RPN介绍 3.1训练步骤:1.将图片输入到VGG或Z ...

随机推荐

  1. 使用 PushGateway 进行数据上报采集

    转载自:https://cloud.tencent.com/developer/article/1531821 1.PushGateway 介绍 Prometheus 是一套开源的系统监控.报警.时间 ...

  2. [题解] LOJ 3300 洛谷 P6620 [省选联考 2020 A 卷] 组合数问题 数学,第二类斯特林数,下降幂

    题目 题目里要求的是: \[\sum_{k=0}^n f(k) \times X^k \times \binom nk \] 这里面出现了给定的多项式,还有组合数,这种题目的套路就是先把给定的普通多项 ...

  3. 轻量级Web框架Flask——Web表单

    安装 Flask-WTF及其依赖可使用pip安装 pip install flask_wtf 配置 要求应用配置一个密钥.密钥是一个由随机字符构成的唯一字符串,通过加密或签名以不同的方式提升应用的安全 ...

  4. python之流程控制上-if、while

    流程控制 编写程序,是将自己的逻辑思想记录下来,使得计算机能够执行的过程. 而流程控制,则是逻辑结构中十分重要的一环. 在程序中,基础的流程结构分为顺序结构.分支结构.顺序结构 顺序结构自不必多说,上 ...

  5. 洛谷P2602 [ZJOI2010] 数字计数 (数位DP)

    白嫖的一道省选题...... 1 #include<cstdio> 2 #include<cstring> 3 #include<algorithm> 4 usin ...

  6. golang开发:go并发的建议(完)

    上次说了一下Go语言布道师 Dave Cheney对Go并发的建议,个人觉得最重要的一条,这次主要想说一下这个. 8.3. Never start a goroutine without knowni ...

  7. flutter系列之:把box布局用出花来

    目录 简介 LimitedBox SizedBox FittedBox 总结 简介 flutter中的layout有很多,基本上看layout的名字就知道这个layout到底是做什么用的.比如说这些l ...

  8. 驱动开发:内核枚举ShadowSSDT基址

    在笔者上一篇文章<驱动开发:Win10枚举完整SSDT地址表>实现了针对SSDT表的枚举功能,本章继续实现对SSSDT表的枚举,ShadowSSDT中文名影子系统服务描述表,SSSDT其主 ...

  9. 四、redis数据类型

    四.redis数据类型 redis可以理解成一个全局的大字典,key就是数据的唯一标识符.根据key对应的值不同,可以划分成5个基本数据类型. 1. string类型: 字符串类型,是 Redis 中 ...

  10. 从ObjectPool到CAS指令

    相信最近看过我的文章的朋友对于Microsoft.Extensions.ObjectPool不陌生:复用.池化是在很多高性能场景的优化技巧,它能减少内存占用率.降低GC频率.提升系统TPS和降低请求时 ...