UOJ191,你失败的原因只有一个:你没有强制在线。

首先这个序列末位加加减减很烦,于是换成操作树,这样就变成查询链的信息了。

注意到一个向量 \((x_1,y_1)\) 比 \((x_2,y_2)\) 优秀的条件是 \(x_1*B-y_1*A>x_2*B-y_2*A\),也就是 \((x_1-x_2)*B>(y_1-y_2)*A\),\(\frac B A<\frac {y_1-y_2}{x_1-x_2}\)。

于是树剖。

容易发现询问是由链上若干个前缀与一个区间组成的。于是我们似乎只需要实现一个可持久化分块,然后在上面二分即可。

但是最后那个区间怎么办?别急,我们后面再进行讨论。

如果直接使用平衡树复杂度应该是十分优秀的 \(O(m\log^2n)\),加上平衡树的大常数能过就有鬼了。

考虑进行神秘优化。

将对前缀的询问拆下来,然后提前对每条链建立好凸包,凸包应该包含的信息有坐标和在树上的深度。然后离线对斜率排序。

对斜率排序的实现如果不精细是 \(O(m\log^2n)\) 的,考虑先把所有询问向量排序,然后对斜率排序就变为对下标排序,此时使用桶排序即可。

每次询问之前将凸包的指针向后跳(相当于预处理处理二分的位置),因为每个数最多被跳一次所以是 \(O(n)\) 的。

每次询问凸包时需要询问凸包上的“前驱”(前面第一个没被标记的)和“后继”(类似前者),将查询的位置与查询的值再次离线下来。

现在的问题变为查询序列上前面第一个比自身小的值与后面第一个比自身小的值。

将序列的元素从大到小排序,每扫到一个元素就将自己与前面的元素合并,然后前面第一个比自身小的值相当于前面第一个块的最后一个元素,后继同理。

使用并查集即可做到 \(O(m\log n\alpha(n))\)。每条链内部的排序使用桶排序即可保证复杂度。

实际上建立凸包的时候要删点,导致最优决策可能已经被 gank 了。

于是考虑把对序列建立凸包改成对一棵树的每个节点到根的路径建立凸包,问题也就变为查询深度最大的祖先并且满足权值小于某个值。

并查集依旧可以解决这个问题,并且也存在 \(O(n+m)\) 的严格线性树上并查集。

但是这样应该如何对斜率排序呢?

考虑到对斜率排序之后遍历的顺序相当于对这棵树进行 BFS,所以我们每“遍历”到一个节点就对其打上标记,查询变为查询最深的被标记的祖先。

老样子时光倒流,变为查询所在连通块最浅的节点的父亲,仍然可以 \(O((n+m)\alpha(n))\) 或 \(O(n+m)\)。

但是你一共有 \(O(m\log n)\) 个询问啊?

对询问分块,分成 \(\log n\) 块,每一块只有 \(O(m)\) 个询问,这样子离线就可以接受了。

但是别忘了还有一些区间。但是数量已经降低到 \(O(m)\) 个了。

前面的无法故技重施,原因是找不到对应的节点。

于是考虑对这条链进行猫树分治,做一个前缀凸壳与后缀凸壳。分治的复杂度为 \(O(n\log n)\),查询因为只需要查询一个前缀一个后缀所以直接二分,复杂度 \(O(m\log n)\),空间复杂度 \(O(n+m)\)。

最终复杂度 \(O(n\log n+m\log n\alpha(n))\) 或 \(O((n+m)\log n)\),空间复杂度 \(O(n+m)\),可以通过此题。

因为代码太难写了,所以先鸽子了,回头来补(

UOJ191口胡的更多相关文章

  1. Topcoder口胡记 SRM 562 Div 1 ~ SRM 599 Div 1

    据说做TC题有助于提高知识水平? :) 传送门:https://284914869.github.io/AEoj/index.html 转载请注明链接:http://www.cnblogs.com/B ...

  2. 口胡FFT现场(没准就听懂了)&&FFT学习笔记

    前言(不想听的可以跳到下面) OK.蒟蒻又来口胡了. 自从ZJOI2019上Day的数论课上的多项式听到懵逼了,所以我就下定决心要学好多项式.感觉自己以前学的多项式都是假的. 但是一直在咕咕,现在是中 ...

  3. BZOJ 口胡记录

    最近实在是懒的不想打代码...好像口胡也算一种训练,那就口胡把. BZOJ 2243 染色(树链剖分) 首先树链剖分,然后记录下每个区间的左右端点颜色和当前区间的颜色段.再对每个节点维护一个tag标记 ...

  4. Atcoder/Topcoder 口胡记录

    Atcoder/Topcoder 理论 AC Atcoder的❌游戏示范 兴致勃勃地打开一场 AGC 看 A 题,先 WA 一发,然后花了一年时间 Fix. 看 B 题,啥玩意?这能求? 睡觉觉. e ...

  5. NOIP2016考前做题(口胡)记录

    NOIP以前可能会持续更新 写在前面 NOIP好像马上就要到了,感觉在校内训练里面经常被虐有一种要滚粗的感觉(雾.不管是普及组还是提高组,我都参加了好几年了,结果一个省一都没有,今年如果还没有的话感觉 ...

  6. 关于有向图走“无限次”后求概率/期望的口胡/【题解】HNCPC2019H 有向图

    关于有向图走"无限次"后求概率/期望的口胡/[题解]HNCPC2019H 有向图 全是口胡 假了不管 讨论的都是图\(G=(V,E),|V|=n,|E|=m\)上的情况 " ...

  7. 「口胡题解」「CF965D」Single-use Stones

    目录 题目 口胡题解 题目 有许多的青蛙要过河,可惜的是,青蛙根本跳不过河,他们最远只能跳 \(L\) 单位长度,而河宽 \(W\) 单位长度. 在河面上有一些石头,距离 \(i\) 远的地方有 \( ...

  8. PKUSC 2022 口胡题解

    \(PKUSC\ 2022\)口胡题解 为了更好的在考试中拿分,我准备学习基础日麻知识(为什么每年都考麻将 啊啊啊) 首先\(STO\)吉老师\(ORZ,\)真的学到了好多 观察标签发现,这套题覆盖知 ...

  9. 「线性基」学习笔记and乱口胡总结

    还以为是什么非常高大上的东西花了1h不到就学好了 线性基 线性基可以在\(O(nlogx)\)的时间内计算出\(n\)个数的最大异或和(不需要相邻). 上述中\(x\)表示的最大的数. 如何实现 定义 ...

随机推荐

  1. 模仿系统的UIImageView

    整体思路:     我们想要模仿系统的UIImageView,我们必须得要知道系统的UIView怎么用.     系统的用法是创建一个UIImageView对象,设置frame,给它传递一个UIIma ...

  2. mac brew安装

    mac 安装homebrew出错 Failed to connect to raw.githubusercontent.com port 443: Connection refused error:原 ...

  3. 虫师Selenium2+Python_8、自动化测试高级应用

    P205--HTML测试报告 P213--自动发邮件功能 P221--Page Object 设计模式

  4. 记录使用WKWebView进行OC与JS交互所踩过的坑

    目录: 1.页面cookie缓存 2.允许弹出JS的弹框 3.在webview页面加载的时候,添加加载进度条 4.禁止掉webview页面的长按复制粘贴功能 5.设置webview的userAgent ...

  5. Feign实现动态URL

    需求描述 动态URL的需求场景: 有一个异步服务S,它为其他业务(业务A,业务B...)提供异步服务接口,在这些异步接口中执行完指定逻辑之后需要回调相应业务方的接口. 这在诸如风控审核,支付回调等场景 ...

  6. ScaleFlux CSD 2000 在携程的应用实践

    一.业界背景与现状 近些年来,有三件事实在业界同时发生:     1.  业务的发展朝着"生产"和"使用"海量增长数据的方向演进.     2.  摩尔定律 的 ...

  7. Solution -「AGC 036D」「AT 5147」Negative Cycle

    \(\mathcal{Descriprtion}\)   Link.   在一个含 \(n\) 个结点的有向图中,存在边 \(\lang i,i+1,0\rang\),它们不能被删除:还有边 \(\l ...

  8. 使用并发 ssh 连接来提升捞日志脚本执行效率

    问题背景 公司有个简单粗暴的日志服务,它部署在多台机器实例上,收集的日志记录在每台机器本地硬盘,写一个小时自动切换日志文件,硬盘空间写满了自动回卷,大约可以保存两三天的历史数据.为什么说它粗暴呢?原来 ...

  9. 商业智能bi行业现状,BI应用的3个层次

    ​商业智能bi行业现状.传统的报表系统技术上已经相当成熟,大家熟悉的Excel等都已经被广泛使用.但是,随着数据的增多,需求的提高,传统报表系统面临的挑战也越来越多. 1. 数据太多,信息太少 密密麻 ...

  10. 【C#基础概念】操作符

    ------------恢复内容开始------------ 一.操作符概览 1.概念 操作符(Operator)也称"运算符" 操作数:是用来操作数据的,被操作符操作的数据称为操 ...