樱花数据集的Logistic回归

绘制散点图

import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import load_iris
iris = load_iris()
#获取花卉两列数据集
DD = iris.data
X = [x[0] for x in DD]
Y = [x[1] for x in DD]
plt.scatter(X[:50], Y[:50], color='red', marker='o', label='setosa')
plt.scatter(X[50:100], Y[50:100], color='blue', marker='x', label='versicolor')
plt.scatter(X[100:], Y[100:],color='green', marker='+', label='Virginica')
plt.legend(loc=2) #左上角
plt.show()

运行结果

逻辑回归分析

from sklearn.linear_model import LogisticRegression
iris = load_iris()
X = iris.data[:, :2] #获取花卉两列数据集
Y = iris.target
lr = LogisticRegression(C=1e5)
lr.fit(X,Y)
#meshgrid函数生成两个网格矩阵
h = .02
x_min, x_max = X[:, 0].min()-.5, X[:, 0].max()+.5
y_min, y_max = X[:, 1].min()-.5, X[:, 1].max()+.5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = lr.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.figure(1, figsize=(8,6))
plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired) # 按z的不同,颜色不一样
plt.scatter(X[:50,0], X[:50,1], color='red',marker='o', label='setosa')
plt.scatter(X[50:100,0], X[50:100,1], color='blue', marker='x', label='versicolor')
plt.scatter(X[100:,0], X[100:,1], color='green', marker='s', label='Virginica')
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.xticks(())
plt.yticks(())
plt.legend(loc=2)
plt.show()

运行结果

基于python的数学建模---logicstic回归的更多相关文章

  1. 使用Python scipy linprog 线性规划求最大值或最小值(使用Python学习数学建模笔记)

    函数格式 scipy.optimize.linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None, method='simp ...

  2. Python数学建模-01.新手必读

    Python 完全可以满足数学建模的需要. Python 是数学建模的最佳选择之一,而且在其它工作中也无所不能. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数学 ...

  3. Matlab与数学建模

    一.学习目标. (1)了解Matlab与数学建模竞赛的关系. (2)掌握Matlab数学建模的第一个小实例—评估股票价值与风险. (3)掌握Matlab数学建模的回归算法. 二.实例演练. 1.谈谈你 ...

  4. Python数学建模-02.数据导入

    数据导入是所有数模编程的第一步,比你想象的更重要. 先要学会一种未必最佳,但是通用.安全.简单.好学的方法. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数据导入 ...

  5. Python小白的数学建模课-A1.国赛赛题类型分析

    分析赛题类型,才能有的放矢. 评论区留下邮箱地址,送你国奖论文分析 『Python小白的数学建模课 @ Youcans』 带你从数模小白成为国赛达人. 1. 数模竞赛国赛 A题类型分析 年份 题目 要 ...

  6. Python小白的数学建模课-A3.12 个新冠疫情数模竞赛赛题与点评

    新冠疫情深刻和全面地影响着社会和生活,已经成为数学建模竞赛的背景帝. 本文收集了与新冠疫情相关的的数学建模竞赛赛题,供大家参考,欢迎收藏关注. 『Python小白的数学建模课 @ Youcans』带你 ...

  7. Python小白的数学建模课-07 选址问题

    选址问题是要选择设施位置使目标达到最优,是数模竞赛中的常见题型. 小白不一定要掌握所有的选址问题,但要能判断是哪一类问题,用哪个模型. 进一步学习 PuLP工具包中处理复杂问题的字典格式快捷建模方法. ...

  8. Python小白的数学建模课-09 微分方程模型

    小白往往听到微分方程就觉得害怕,其实数学建模中的微分方程模型不仅没那么复杂,而且很容易写出高水平的数模论文. 本文介绍微分方程模型的建模与求解,通过常微分方程.常微分方程组.高阶常微分方程 3个案例手 ...

  9. Python小白的数学建模课-B5. 新冠疫情 SEIR模型

    传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. 考虑存在易感者.暴露者.患病者和康复者四类人群,适用于具有潜伏期.治愈后获得终身免疫的传染病. 本 ...

  10. 数学建模:1.概述& 监督学习--回归分析模型

    数学建模概述 监督学习-回归分析(线性回归) 监督学习-分类分析(KNN最邻近分类) 非监督学习-聚类(PCA主成分分析& K-means聚类) 随机算法-蒙特卡洛算法 1.回归分析 在统计学 ...

随机推荐

  1. KingbaseES 绑定变量窥探机制

    概述: 对于数据严重倾斜的,极端如以下例子,不同的传入值,可能执行计划不同,制定执行计划时,就要求知道变量的值.对于绑定变量的情况,我们知道Oracle 有 _optim_peek_user_bind ...

  2. 往harbor上传镜像

    下载镜像并给镜像打tag [root@hdss7-200 harbor]# docker pull nginx:1.7.9 [root@hdss7-200 harbor]# docker images ...

  3. java script 日常学习 正则表达式

    <!DOCTYPE html><html><head> <title>函数的运用</title> <meta charset=&quo ...

  4. Nginx相关模块学习使用实践指南

    转载自:https://www.bilibili.com/read/cv16150654?spm_id_from=333.999.0.0 0x01 Nginx 常用模块使用实践 官方模块使用手册:ht ...

  5. 重要参考文档---MySQL 8.0.29 使用yum方式安装,开启navicat远程连接,搭建主从,读写分离(需要使用到ProxySQL,此文不讲述这个)

    yum方式安装 echo "删除系统默认或之前可能安装的其他版本的 mysql" for i in $(rpm -qa|grep mysql);do rpm -e $i --nod ...

  6. Nginx 动态压缩与静态压缩,显著提高前后端分离项目响应速度!

    文章转载自:https://mp.weixin.qq.com/s/NuTmEUQU5L69is53bCauKA Nginx 中配置前端的 gzip 压缩,有两种思路: Nginx 动态压缩,静态文件还 ...

  7. kubeadm join 命令执行流程

  8. mac通过docker一键部署Nexus3

    目录 mac通过docker一键部署Nexus3 一.前言 二.系统配置 三.安装步骤 1.Dockerhub查看镜像地址 2.一键安装 2.1.克隆脚本 2.2.安装程序 2.2.1.程序安装详情 ...

  9. 一篇文章带你了解网页框架——Vue简单入门

    一篇文章带你了解网页框架--Vue简单入门 这篇文章将会介绍我们前端入门级别的框架--Vue的简单使用 如果你以后想从事后端程序员,又想要稍微了解前端框架知识,那么这篇文章或许可以给你带来帮助 温馨提 ...

  10. if、where、trim、choose、when、otherwise、foreach

    1.if if标签可通过test属性的表达式进行判断,若表达式的结果为true,则标签中的内容会执行:反之标签中 的内容不会执行 <!--List<Emp> getEmpListBy ...