基于python的数学建模---logicstic回归
樱花数据集的Logistic回归

绘制散点图
import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import load_iris
iris = load_iris()
#获取花卉两列数据集
DD = iris.data
X = [x[0] for x in DD]
Y = [x[1] for x in DD]
plt.scatter(X[:50], Y[:50], color='red', marker='o', label='setosa')
plt.scatter(X[50:100], Y[50:100], color='blue', marker='x', label='versicolor')
plt.scatter(X[100:], Y[100:],color='green', marker='+', label='Virginica')
plt.legend(loc=2) #左上角
plt.show()
运行结果

逻辑回归分析
from sklearn.linear_model import LogisticRegression
iris = load_iris()
X = iris.data[:, :2] #获取花卉两列数据集
Y = iris.target
lr = LogisticRegression(C=1e5)
lr.fit(X,Y)
#meshgrid函数生成两个网格矩阵
h = .02
x_min, x_max = X[:, 0].min()-.5, X[:, 0].max()+.5
y_min, y_max = X[:, 1].min()-.5, X[:, 1].max()+.5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = lr.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.figure(1, figsize=(8,6))
plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired) # 按z的不同,颜色不一样
plt.scatter(X[:50,0], X[:50,1], color='red',marker='o', label='setosa')
plt.scatter(X[50:100,0], X[50:100,1], color='blue', marker='x', label='versicolor')
plt.scatter(X[100:,0], X[100:,1], color='green', marker='s', label='Virginica')
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.xticks(())
plt.yticks(())
plt.legend(loc=2)
plt.show()
运行结果

基于python的数学建模---logicstic回归的更多相关文章
- 使用Python scipy linprog 线性规划求最大值或最小值(使用Python学习数学建模笔记)
函数格式 scipy.optimize.linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None, method='simp ...
- Python数学建模-01.新手必读
Python 完全可以满足数学建模的需要. Python 是数学建模的最佳选择之一,而且在其它工作中也无所不能. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数学 ...
- Matlab与数学建模
一.学习目标. (1)了解Matlab与数学建模竞赛的关系. (2)掌握Matlab数学建模的第一个小实例—评估股票价值与风险. (3)掌握Matlab数学建模的回归算法. 二.实例演练. 1.谈谈你 ...
- Python数学建模-02.数据导入
数据导入是所有数模编程的第一步,比你想象的更重要. 先要学会一种未必最佳,但是通用.安全.简单.好学的方法. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数据导入 ...
- Python小白的数学建模课-A1.国赛赛题类型分析
分析赛题类型,才能有的放矢. 评论区留下邮箱地址,送你国奖论文分析 『Python小白的数学建模课 @ Youcans』 带你从数模小白成为国赛达人. 1. 数模竞赛国赛 A题类型分析 年份 题目 要 ...
- Python小白的数学建模课-A3.12 个新冠疫情数模竞赛赛题与点评
新冠疫情深刻和全面地影响着社会和生活,已经成为数学建模竞赛的背景帝. 本文收集了与新冠疫情相关的的数学建模竞赛赛题,供大家参考,欢迎收藏关注. 『Python小白的数学建模课 @ Youcans』带你 ...
- Python小白的数学建模课-07 选址问题
选址问题是要选择设施位置使目标达到最优,是数模竞赛中的常见题型. 小白不一定要掌握所有的选址问题,但要能判断是哪一类问题,用哪个模型. 进一步学习 PuLP工具包中处理复杂问题的字典格式快捷建模方法. ...
- Python小白的数学建模课-09 微分方程模型
小白往往听到微分方程就觉得害怕,其实数学建模中的微分方程模型不仅没那么复杂,而且很容易写出高水平的数模论文. 本文介绍微分方程模型的建模与求解,通过常微分方程.常微分方程组.高阶常微分方程 3个案例手 ...
- Python小白的数学建模课-B5. 新冠疫情 SEIR模型
传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. 考虑存在易感者.暴露者.患病者和康复者四类人群,适用于具有潜伏期.治愈后获得终身免疫的传染病. 本 ...
- 数学建模:1.概述& 监督学习--回归分析模型
数学建模概述 监督学习-回归分析(线性回归) 监督学习-分类分析(KNN最邻近分类) 非监督学习-聚类(PCA主成分分析& K-means聚类) 随机算法-蒙特卡洛算法 1.回归分析 在统计学 ...
随机推荐
- 全网最简单的大文件上传与下载代码实现(React+Go)
前言 前段时间我需要实现大文件上传的需求,在网上查找了很多资料,并且也发现已经有很多优秀的博客讲了大文件上传下载这个功能. 我的项目是个比较简单的项目,并没有采用特别复杂的实现方式,所以我这篇文章的目 ...
- 群晖-使用docker套件部署Prometheus+Grafana
Docker 部署 Prometheus 说明: 先在群辉管理界面安装好docker套件,修改一下镜像源(更快一点) 所需容器如下 Prometheus Server(普罗米修斯监控主服务器 ) No ...
- Golang 随机淘汰算法缓存实现
缓存如果写满, 它必须淘汰旧值以容纳新值, 最近最少使用淘汰算法 (LRU) 是一个不错的选择, 因为你如果最近使用过某些值, 这些值更可能被保留. 你如果构造一个比缓存限制还长的循环, 当循环最后的 ...
- haodoop数据压缩
压缩概述 压缩技术能够有效减少底层存储系统(HDFS)读写字节数.压缩提高了网络宽带和磁盘空间的效率.在运行MR程序时,I/O操作,网络数据传输,Shuffle和Merge要花大量的时间,尤其是数据规 ...
- Java 异步编程 (5 种异步实现方式详解)
同步操作如果遇到一个耗时的方法,需要阻塞等待,那么我们有没有办法解决呢?让它异步执行,下面我会详解异步及实现@mikechen 目录 什么是异步? 一.线程异步 二.Future异步 三.Comp ...
- 【设计模式】Java设计模式 - 模板模式
Java设计模式 - 模板模式 不断学习才是王道 继续踏上学习之路,学之分享笔记 总有一天我也能像各位大佬一样 原创作品,更多关注我CSDN: 一个有梦有戏的人 准备将博客园.CSDN一起记录分享自己 ...
- ACL和NAT
1 ACL 1.1 ACL的作用 1).用来对数据包做访问控制(丢弃或者放弃) 2).结合其他协议,用来匹配范围 1.2 ACL的工作原理 当数据包从接口经过时,由于接口启用了ACL,此时路由器会对报 ...
- 通过helm搭建Harbor
文章转载自:http://www.mydlq.club/article/66/ 系统环境: kubernetes 版本:1.20.1 Traefik Ingress 版本:2.4.3 Harbor C ...
- ingress-nginx 的使用 =》 部署在 Kubernetes 集群中的应用暴露给外部的用户使用
文章转载自:https://mp.weixin.qq.com/s?__biz=MzU4MjQ0MTU4Ng==&mid=2247488189&idx=1&sn=8175f067 ...
- 阿里云SLB的健康检查配置
若阿里云SLB健康检查异常,则默认SLB无法访问到后端ECS,也就意味着通过SLB访问后端ECS上部署的服务会报502 gateway. 另一种办法是关闭健康检查(不推荐) 简要说明: SLB通过配置 ...