[排序算法] 堆排序 (C++)
堆排序解释
什么是堆
堆 heap 是一种近似完全二叉树的数据结构,其满足一下两个性质
1. 堆中某个结点的值总是不大于(或不小于)其父结点的值;
2. 堆总是一棵完全二叉树
将根结点最大的堆叫做大根堆(大项堆),根结点最小的堆叫做小根堆(小项堆)。
堆排序原理
我们一般用大根堆对数组进行正向排序喔
首先将当前的无序数组构成一个无序堆,对于每个元素在堆中对应的下标,由二叉树数组表示法可得
若一个节点的下标为 i,那么其左孩子节点下标为 2 * i + 1,右孩子节点下标为 2 * i + 2。
然后我们再将当前的无序堆进行不断调整,直到最后构造成 大根堆。
之后交换首尾元素,即将当前堆顶的最大元素交换到末尾,这时此元素就完成了归位。
交换完首尾元素后,此时的堆再次变成一个无序堆,需要再次堆对剩余元素进行调整,使其重新变成 大根堆。
重复上述的操作,直至堆的大小为 1,最后所有的元素都交换结束,即完成了堆排序。
堆排序动态演示
我们以 [4,7,3,1,6,2,5] 为例进行动态演示
构成无序堆

从最后一个非叶子节点开始 调整堆

对倒数第二个非叶子节点 调整堆 此时我们发现无需调整
对最后一个非叶子节点 调整堆

这时当前根节点的左节点由于调整不满足大根堆性质 需递归调整

大根堆构建完成

交换首尾 第一个元素归位

第一个元素归位后 再度调整(1)

第一个元素归位后 再度调整(2)

交换首尾 第二个元素归位

第二个元素归位后 再度调整

交换首尾 第三个元素归位

第三个元素归位后 再度调整

交换首尾 第四个元素归位

第四个元素归位后 再度调整

交换首尾 第五个元素归位

交换首尾 第六个元素归位

最后堆大小为1,排序完成

堆排序时间复杂度
构建初始的大根堆时间复杂度为O(n),
交换及重建大顶堆的过程中,需要交换n-1次,重建大顶堆的过程根据完全二叉树,log2(n-1),log2(n-2)...1 近似为nlogn。

堆排序核心代码
//调整堆
void Heapify(vector<int> &v, int i, int len){
int left = 2 * i + 1, right = 2 * i + 2; //二叉树当前节点的左右节点的索引
int maxindex = i; //先默认i为最大值索引 即当前非叶子节点
if(left < len && v[left] > v[maxindex]) //如果有左节点且左节点值更大
maxindex = left;
if(right < len && v[right] > v[maxindex]) //如果有右节点且右节点值更大
maxindex = right;
if(maxindex != i){
//发现最大值并非当前非叶子节点,则需调整 即交换最大值到非叶子节点处
swap(v[i], v[maxindex]);
//互换之后,子节点值发生变化,子节点若也有其子节点,则需继续调整其子结构
Heapify(v, maxindex, len); //递归 调整堆
}
}
//无序数组 构建大根堆
void BuildMaxHeap(vector<int> &v, int len){
//从最后一个非叶子节点开始遍历,调整每个子结构,构建形成大根堆
for(int i = len / 2 - 1; i >= 0; i--)
Heapify(v, i, len);
}
//堆排序
void HeapSort(vector<int> &v){
int len = v.size();
BuildMaxHeap(v, len); //构建大根堆
while(len > 1){
swap(v[0], v[len - 1]); //交换首尾数据 尾部最大 且出现在合适位置
Heapify(v, 0, --len); //重置大根堆
}
}
完整程序源代码
#include<iostream>
#include<vector>
#include<ctime>
using namespace std;
//调整堆
void Heapify(vector<int> &v, int i, int len){
int left = 2 * i + 1, right = 2 * i + 2; //二叉树当前节点的左右节点的索引
int maxindex = i; //先默认i为最大值索引 即当前非叶子节点
if(left < len && v[left] > v[maxindex]) //如果有左节点且左节点值更大
maxindex = left;
if(right < len && v[right] > v[maxindex]) //如果有右节点且右节点值更大
maxindex = right;
if(maxindex != i){
//发现最大值并非当前非叶子节点,则需调整 即交换最大值到非叶子节点处
swap(v[i], v[maxindex]);
//互换之后,子节点值发生变化,子节点若也有其子节点,则需继续调整其子结构
Heapify(v, maxindex, len); //递归 调整堆
}
}
//无序数组 构建大根堆
void BuildMaxHeap(vector<int> &v, int len){
//从最后一个非叶子节点开始遍历,调整每个子结构,构建形成大根堆
for(int i = len / 2 - 1; i >= 0; i--)
Heapify(v, i, len);
}
//堆排序
void HeapSort(vector<int> &v){
int len = v.size();
BuildMaxHeap(v, len); //构建大根堆
while(len > 1){
swap(v[0], v[len - 1]); //交换首尾数据 尾部最大 且出现在合适位置
Heapify(v, 0, --len); //重置大根堆
}
}
//打印数据
void show(vector<int> &v){
for(auto &x : v)
cout<<x<<" ";
cout<<endl;
}
main(){
vector<int> v;
srand((int)time(0));
int n = 50;
while(n--)
v.push_back(rand() % 100 + 1);
show(v);
HeapSort(v);
cout<<endl<<endl;
show(v);
}
程序运行结果图

[排序算法] 堆排序 (C++)的更多相关文章
- 使用 js 实现十大排序算法: 堆排序
使用 js 实现十大排序算法: 堆排序 堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法. 大顶堆:每个节点的值都大于或等于其子节点的值,在堆排序算法中用于升序排列: 小顶堆:每个 ...
- 八大排序算法——堆排序(动图演示 思路分析 实例代码java 复杂度分析)
一.动图演示 二.思路分析 先来了解下堆的相关概念:堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆:或者每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆.如 ...
- 排序算法-堆排序(Java)
package com.rao.linkList; import java.util.Arrays; /** * @author Srao * @className HeapSort * @date ...
- JavaScript排序算法——堆排序
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- Java排序算法——堆排序
堆排序 package sort; public class Heap_Sort { public static void main(String[] args) { // TODO 自动生成的方法存 ...
- 七种常见经典排序算法总结(C++实现)
排序算法是非常常见也非常基础的算法,以至于大部分情况下它们都被集成到了语言的辅助库中.排序算法虽然已经可以很方便的使用,但是理解排序算法可以帮助我们找到解题的方向. 1. 冒泡排序 (Bubble S ...
- Java常见排序算法之堆排序
在学习算法的过程中,我们难免会接触很多和排序相关的算法.总而言之,对于任何编程人员来说,基本的排序算法是必须要掌握的. 从今天开始,我们将要进行基本的排序算法的讲解.Are you ready?Let ...
- 排序算法c语言描述---堆排序
排序算法系列学习,主要描述冒泡排序,选择排序,直接插入排序,希尔排序,堆排序,归并排序,快速排序等排序进行分析. 文章规划: 一.通过自己对排序算法本身的理解,对每个方法写个小测试程序.具体思路分析不 ...
- 七内部排序算法汇总(插入排序、Shell排序、冒泡排序、请选择类别、、高速分拣合并排序、堆排序)
写在前面: 排序是计算机程序设计中的一种重要操作,它的功能是将一个数据元素的随意序列,又一次排列成一个按keyword有序的序列.因此排序掌握各种排序算法很重要. 对以下介绍的各个排序,我们假定全部排 ...
- Java排序算法之堆排序
堆的概念: 堆是一种完全二叉树,非叶子结点 i 要满足key[i]>key[i+1]&&key[i]>key[i+2](最大堆) 或者 key[i]<key[i+1] ...
随机推荐
- Bypass Windows Defender Dump Lsass(手法拙劣)
0x00.前言 Windows Defender是一款内置在Windows操作系统的杀毒软件程序,本文旨在记录实战环境中,服务器存在Windows Defender情况下转储凭证的渗透手法,技术简单粗 ...
- Mybatis框架搭建
Mybatis框架搭建 思路: 搭建环境 导入Mybatis 编写代码 测试 一.搭建环境 创建数据库 /* Navicat Premium Data Transfer Source Server ...
- 彻底掌握Makefile(二)
彻底掌握Makefile(二) 前言 在前面的文章彻底掌握Makefile(一)当中,我们简要的介绍了一些常见的makefile使用方法,在本篇文章当中我们将继续介绍一些makefile当中的常见用法 ...
- 通过管理接口配置ProxySQL
可以使用mysql客户端来连接管理接口,以下是使用admin凭据连接到本地6032端口的管理接口: $ mysql -u admin -padmin -h 127.0.0.1 -P6032 --pro ...
- Elastic:应用程序性能监控/管理(APM)实践
在今天的文章里,我们将介绍Elastic的一个重要的应用:应用程序性能管理(Application Performance Monitoring/Management),简称APM.那么到底什么是AP ...
- 获取Docker容器名称和ID
docker ps --format "{{.Names}}" docker ps -q
- 查看当前看k8s集群支持的版本命令
# kubectl api-versions admissionregistration.k8s.io/v1 admissionregistration.k8s.io/v1beta1 apiexten ...
- 打造企业自己代码规范IDEA插件(上)
"交流互鉴是文明发展的本质要求.只有同其他文明交流互鉴.取长补短,才能保持旺盛生命活力." 这说的是文明,但映射到计算机技术本身也是相通的,开源代码/项目就是一种很好的技术交流方式 ...
- 《MySQL自传》
撰写本文查阅了大量参考资料,也得到很多朋友的指点帮助,特别感谢: Jimmy Yang--阿里云数据库研究员,原Oracle InnoDB Architect. 彭立勋--华为云数据库总工程师,MyS ...
- PHP全栈开发(七):PHP与MySQL存储交互(1.连接、创建数据库;创建数据表)
在Linux服务器中可以使用命令 mysqladmin -u root password beijing2007; 来修改MySQL的root用户的密码. 但是在我们自己安装了wampserver的电 ...