CF1187E Tree Painting【换根dp】
题意
一棵$N$个节点的树,初始时所有的节点都是白色,第一次可以选择任意一个把它涂成黑色。接下来,只能把与黑色节点原来相连的白色节点涂成黑色(涂成黑色的点视为被删去,与其它节点不相连)。每一次涂的分数为涂的这个白色节点所在的联通块里的白色节点的个数。要把这$N$个节点都涂成黑色,求能获得的最大分数。
(人工翻译+手打qwq,若有误差请告诉我)
分析
没有什么太大思路的题先乱搞
然后我们发现 我们在最开始随便把这棵树的其中一个节点涂成黑色之后,这个树的涂法就唯一确定了。涂了之后这棵树就会散成很多棵小树,如果我们把这棵树提起来,把最开始涂的那个点视作根,这棵树就变成了根的子树。而每次只能涂与黑色节点原来相连的白色节点,也就是只能涂原来根的那些儿子。而且根的儿子被涂的顺序不会影响答案(他们已经变成了不相连的联通块,先涂哪一个联通块是不会影响答案的),所以答案就确定了。
也就是说,我们从根开始涂,选取的根不同,答案就不同。那么我们将所有的节点都当作一次根,然后模拟一次,取最大值,就可以了。
但是这样的复杂度太高。
让我们先分析一下这个模拟的过程。
我们来观察这个节点:9
它被计算的情况有:删去1时,删去6时,删去7时,删去9时
也就是它的每一个爸爸或者自己被删去的时候,它都要被算入答案
所以它对答案的贡献就是它的爸爸的个数+1=深度
每个节点对答案的贡献都为它的深度
答案就是所有节点的深度和
再来考虑换根的问题
还是这张图
当根从1换到6时,6,7,8,9(也就是6的子树)的深度都要-1,而其它节点的深度都+1
所以把根从爸爸换到儿子,答案会少$size[son]$而会多$(n-size[son])$,所以我们再遍历一下这颗树,把根从爸爸换到儿子那里去,然后再计算答案,取最大值。
(2019.11.5二刷此题,重写代码)
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
#include<queue>
using namespace std;
#define N 200005
#define INF 0x3f3f3f3f
#define ll long long
int rd()
{
int f=,x=;char c=getchar();
while(c<''||c>''){if(c=='-') f=-;c=getchar();}
while(c>=''&&c<=''){x=(x<<)+(x<<)+(c^);c=getchar();}
return f*x;
}
int n;
vector<int>G[N];
int siz[N],d[N];
ll ans,res;
void dfs(int u,int f,int dep)
{
d[u]=dep;
siz[u]=;
for(int i=;i<G[u].size();i++)
{
int v=G[u][i];
if(v==f) continue;
dfs(v,u,dep+);
siz[u]+=siz[v];
}
res+=d[u];//以点1为根的答案(1号点工具人
}
void dfs2(int u,int f)
{
ans=max(ans,res);
for(int i=;i<G[u].size();i++)
{
int v=G[u][i];
if(f==v) continue;
res-=siz[v];
res+=(n-siz[v]);
dfs2(v,u);
res-=(n-siz[v]);
res+=siz[v];//回溯 也可以传成参数
}
}
int main()
{
n=rd();
for(int i=;i<n;i++)
{
int u=rd(),v=rd();
G[u].push_back(v);
G[v].push_back(u);
}
dfs(,,);
dfs2(,);
printf("%lld\n",ans);
return ;
}
Code
CF1187E Tree Painting【换根dp】的更多相关文章
- CodeForce - 1187 E. Tree Painting (换根dp)
You are given a tree (an undirected connected acyclic graph) consisting of nn vertices. You are play ...
- [BZOJ4379][POI2015]Modernizacja autostrady[树的直径+换根dp]
题意 给定一棵 \(n\) 个节点的树,可以断掉一条边再连接任意两个点,询问新构成的树的直径的最小和最大值. \(n\leq 5\times 10^5\) . 分析 记断掉一条边之后两棵树的直径为 \ ...
- 2018.10.15 NOIP训练 水流成河(换根dp)
传送门 换根dp入门题. 貌似李煜东的书上讲过? 不记得了. 先推出以1为根时的答案. 然后考虑向儿子转移. 我们记f[p]f[p]f[p]表示原树中以ppp为根的子树的答案. g[p]g[p]g[p ...
- 换根DP+树的直径【洛谷P3761】 [TJOI2017]城市
P3761 [TJOI2017]城市 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速公 ...
- 小奇的仓库:换根dp
一道很好的换根dp题.考场上现场yy十分愉快 给定树,求每个点的到其它所有点的距离异或上m之后的值,n=100000,m<=16 只能线性复杂度求解,m又小得奇怪.或者带一个log像kx一样打一 ...
- 国家集训队 Crash 的文明世界(第二类斯特林数+换根dp)
题意 题目链接:https://www.luogu.org/problem/P4827 给定一棵 \(n\) 个节点的树和一个常数 \(k\) ,对于树上的每一个节点 \(i\) ,求出 \( ...
- Acesrc and Travel(2019年杭电多校第八场06+HDU6662+换根dp)
题目链接 传送门 题意 两个绝顶聪明的人在树上玩博弈,规则是轮流选择下一个要到达的点,每达到一个点时,先手和后手分别获得\(a_i,b_i\)(到达这个点时两个人都会获得)的权值,已经经过的点无法再次 ...
- bzoj 3566: [SHOI2014]概率充电器 数学期望+换根dp
题意:给定一颗树,树上每个点通电概率为 $q[i]$%,每条边通电的概率为 $p[i]$%,求期望充入电的点的个数. 期望在任何时候都具有线性性,所以可以分别求每个点通电的概率(这种情况下期望=概率 ...
- codeforces1156D 0-1-Tree 换根dp
题目传送门 题意: 给定一棵n个点的边权为0或1的树,一条合法的路径(x,y)(x≠y)满足,从x走到y,一旦经过边权为1的边,就不能再经过边权为0的边,求有多少边满足条件? 思路: 首先,这道题也可 ...
- [Bzoj3743][Coci2015] Kamp【换根Dp】
Online Judge:Bzoj3743 Label:换根Dp,维护最长/次长链 题目描述 一颗树n个点,n-1条边,经过每条边都要花费一定的时间,任意两个点都是联通的. 有K个人(分布在K个不同的 ...
随机推荐
- JSP中的四种作用域?
page.request.session和application,具体如下: ①page 代表与一个页面相关的对象和属性. ②request 代表与Web客户机发出的一个请求相关的对象和属性.一个请求 ...
- vue项目搭建步骤以及一些安装依赖包
一. vue-cli初始化1. 全局安装 vue-clinpm install --global vue-cli2. 创建一个基于 webpack 模板的新项目vue init webpack my- ...
- 直通BAT必考题系列:JVM的4种垃圾回收算法、垃圾回收机制与总结
垃圾回收算法 1.标记清除 标记-清除算法将垃圾回收分为两个阶段:标记阶段和清除阶段. 在标记阶段首先通过根节点(GC Roots),标记所有从根节点开始的对象,未被标记的对象就是未被引用的垃圾对象. ...
- SpringBoot项目中,获取配置文件信息
1.在配置文件中设置信息,格式如下 wechat: mpAppId: wxdf2b09f280e6e6e2 mpAppSecret: f924b2e9f140ac98f9cb5317a8951c71 ...
- python27 错误汇总
一.TypeError: object of type 'NoneType' has no len() 解决的方法: 源代码:resp_data = None (None是一个空的对象) 修改后代码 ...
- input选择框默认样式修改
input选择框是无法直接修改样式,我们只能间接来改变它样式. 原理:用图片来代替原来的input选择框,原来的input选择框定位到图片上方并让它opacity为0,鼠标点击时用js来改变图片,这样 ...
- 两种建立堆的方法HeapInsert & Heapify
参考 堆排序中两种建堆方法的比较 第一种方法HeapInsert 它可以假定我们事先不知道有多少个元素,通过不断往堆里面插入元素进行调整来构建堆. 它的大致步骤如下: 首先增加堆的长度,在最末尾的地方 ...
- H5视频活动踩坑
最近做了一些嵌入视频的活动,积累了点视频方面的经验,下面记录下别人和自己踩过的坑以及相应的解决方案.1.碰到问题和解决方案1.1.ios 网页中播放视频默认全屏(点击视频会弹出播放器进行全屏播放).解 ...
- ubuntu 16.04 安装最新的 docker
转载地址:https://www.cnblogs.com/tianhei/p/7802064.html 本文将介绍在ubuntu16.04系统下安装和升级docker.docker-compose ...
- JSP——隐式对象(implicit object)
Servlet容器将几个对象传递给它所运行的Servlet. 例如,在Servlet的service方法中获得HttpServletRequest和HttpServletResponse,并在init ...