枚举 \(i\),然后可以把 \(j\) 和 \(i - j\) 绑定成一对。把一对看成一个整的元素,与别的没有被绑定的数一起来参与选择就可以了。

但是由于实际上一对中的数是可以二选一的,所以不妨令 \(t\) 表示一组方案中出现的对的数的个数,那么有 \(t\) 对数至少出现一次的选择方法的方案数就还需要乘上 \(2^t\)。

令 \(s\) 表示原来的 \(k\) 个数去掉所有的被绑定的对以后的值域的大小,由插板法可以求出,出现了 \(t\) 个对的方案数为:

\[\binom{k}{j}\binom{n+s-1}{t+s-1}\cdot2^t
\]

另外,如果 \(i\) 是偶数,那么 \(\frac i2\) 只能出现一次。可以枚举有没有出现,将之转化为两个子问题。

#include<bits/stdc++.h>

#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b , 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b , 1 : 0;} typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii; template<typename I>
inline void read(I &x) {
int f = 0, c;
while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
x = c & 15;
while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
f ? x = -x : 0;
} const int N = 4000 + 7;
const int P = 998244353; int n, k;
int C[N][N]; inline int smod(int x) { return x >= P ? x - P : x;}
inline void sadd(int &x, int y) { x += y; x >= P ? x -= P : x; }
inline void ycl(int n) {
C[0][0] = 1;
for (int i = 1; i <= n; ++i) {
C[i][0] = 1;
for (int j = 1; j <= i; ++j) C[i][j] = smod(C[i - 1][j] + C[i - 1][j - 1]);//, dbg("C(%d, %d) = %d\n", i, j, C[i][j]);
}
} inline int calc(int n, int i, int k) {
int ans = 0;
int lim = std::min(i - 1, k) - (i / 2 + 1) + 1, ss = k - (lim << 1), mul = 1;
// dbg("i = %d, k = %d, lim = %d\n", i, k, lim);
for (int j = 0; j <= lim; ++j) {
sadd(ans, (ll)C[lim][j] * C[n + ss - 1][j + ss - 1] % P * mul % P);
// dbg("W: i = %d, ans = %d\n", i, ans);
mul = smod(mul << 1);
}
return ans;
} inline void work() {
ycl(n + k);
for (int i = 2; i <= (k << 1); ++i)
if (i & 1) printf("%d\n", calc(n, i, k));
else printf("%d\n", smod(calc(n, i - 1, k - 1) + calc(n - 1, i - 1, k - 1)));
} inline void init() {
read(k), read(n);
} int main() {
#ifdef hzhkk
freopen("hkk.in", "r", stdin);
#endif
init();
work();
fclose(stdin), fclose(stdout);
return 0;
}

ARC102E - Stop. Otherwise... 组合计数的更多相关文章

  1. bzoj 2281 [Sdoi2011]黑白棋(博弈+组合计数)

    黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色 ...

  2. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

  3. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

  4. 【BZOJ5491】[HNOI2019]多边形(模拟,组合计数)

    [HNOI2019]多边形(模拟,组合计数) 题面 洛谷 题解 突然特别想骂人,本来我考场现切了的,结果WA了几个点,刚刚拿代码一看有个地方忘记取模了. 首先发现终止态一定是所有点都向\(n\)连边( ...

  5. [总结]数论和组合计数类数学相关(定理&证明&板子)

    0 写在前面 0.0 前言 由于我太菜了,导致一些东西一学就忘,特开此文来记录下最让我头痛的数学相关问题. 一些引用的文字都注释了原文链接,若侵犯了您的权益,敬请告知:若文章中出现错误,也烦请告知. ...

  6. 【BZOJ5323】[JXOI2018]游戏(组合计数,线性筛)

    [BZOJ5323][JXOI2018]游戏(组合计数,线性筛) 题面 BZOJ 洛谷 题解 显然要考虑的位置只有那些在\([l,r]\)中不存在任意一个约数的数. 假设这样的数有\(x\)个,那么剩 ...

  7. 【BZOJ5305】[HAOI2018]苹果树(组合计数)

    [BZOJ5305][HAOI2018]苹果树(组合计数) 题面 BZOJ 洛谷 题解 考虑对于每条边计算贡献.每条边的贡献是\(size*(n-size)\). 对于某个点\(u\),如果它有一棵大 ...

  8. 【BZOJ3142】[HNOI2013]数列(组合计数)

    [BZOJ3142][HNOI2013]数列(组合计数) 题面 BZOJ 洛谷 题解 唯一考虑的就是把一段值给分配给\(k-1\)天,假设这\(k-1\)天分配好了,第\(i\)天是\(a_i\),假 ...

  9. 【BZOJ4005】[JLOI2015] 骗我呢(容斥,组合计数)

    [BZOJ4005][JLOI2015] 骗我呢(容斥,组合计数) 题面 BZOJ 洛谷 题解 lalaxu #include<iostream> using namespace std; ...

随机推荐

  1. selenium 浏览器无界面模式运行

    以Chrome浏览器为例: 方法一: from selenium.webdriver import Chrome, ChromeOptions opt = ChromeOptions() # 创建Ch ...

  2. Solr JAVA客户端SolrJ的使用

    一.Solrj简介 SolrJ是操作Solr的JAVA客户端,它提供了增加.修改.删除.查询Solr索引的JAVA接口.SolrJ针对 Solr提供了Rest 的HTTP接口进行了封装, SolrJ底 ...

  3. [CSP-S模拟测试]:Travel(贪心+构造)

    题目描述 给定一个长度为$n$的格子序列$x_1,x_2,...,x_n$.每一次$Lyra$可以选择向左跳到任意一个还没到过的位置,也可以向右跳到任意一个还没到过的位置.如果现在$Lyra$在格子$ ...

  4. activity_main.xml 添加自己画的view 组件

    <?xml version="1.0" encoding="utf-8"?><LinearLayout xmlns:android=" ...

  5. mac的jvm调优工具

    安装好JDK之后调优工具所在位置为: /System/Library/Frameworks/JavaVM.framework/Versions/Current/Commands/jvisualvm j ...

  6. Schema 与数据类型优化

    这是<高性能 MySQL(第三版)>第四章<Schema 与数据类型优化>的读书笔记. 1. 选择优化的数据类型 数据类型的选择原则: 越小越好:选择满足需求的最小类型.注意, ...

  7. Vagrant - 打造跨平台的一致开发环境

    官网 参考资料 借助 Vagrant ,可以使用 Vagrantfile 文件自动化虚拟机的安装和配置流程,方便快速的打造跨平台的统一开发环境. 1. Vagrant 是啥 Vagrant 用于构建及 ...

  8. ADFS 2016 & Dynamics CRM

    参考:https://blog.csdn.net/vic0228/article/details/80188291 webapp 获取token https://adfs.demo.local/adf ...

  9. socket选项总结(setsockopt)

    功能描述:        获取或者设置与某个套接字关联的选 项.选项可能存在于多层协议中,它们总会出现在最上面的套接字层.当操作套接字选项时,选项位于的层和选项的名称必须给出.为了操作套接字层的选项, ...

  10. 远程操作 SQl server2008新建角色和数据库

    远程操作 SQl server2008 1.windows身份登录,安全性-->登录名(右键)-->新建登录名:yc ,密码111111-->点选sql server身份验证--&g ...