BZOJ 5317: [Jsoi2018]部落战争
写出式子,若存在 $a \in A$,$b \in B$,使得 $b+v=a$,那么此方案会产生冲突
即存在 $a \in A$,$b \in B$,使得 $v=a+(-b)$,设 $C=A+(-B)$ 那么有 $v \in C$,$+$ 表示闵可夫斯基和,$-$ 表示坐标符号取反
所有直接求出 $A$ 和 $-B$ 的闵可夫斯基和的凸包,然后查询 $v$ 是否在凸包内即可
注意直接求闵可夫斯基和的凸包可能会有一些平行的向量,为了方便查询,重新做一遍凸包即可
我的做法会把凸包坐标变化,所以查询的向量也要跟着变化
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
typedef double db;
inline int read()
{
int x=,f=; char ch=getchar();
while(ch<''||ch>'') { if(ch=='-') f=-; ch=getchar(); }
while(ch>=''&&ch<='') { x=(x<<)+(x<<)+(ch^); ch=getchar(); }
return x*f;
}
const int N=2e5+;
struct poi {
ll x,y;
poi (ll a=,ll b=) { x=a,y=b; }
inline poi operator + (const poi &tmp) const { return poi(x+tmp.x,y+tmp.y); }
inline poi operator - (const poi &tmp) const { return poi(x-tmp.x,y-tmp.y); }
inline bool operator < (const poi &tmp) const { return x!=tmp.x ? x<tmp.x : y<tmp.y; }
}A[N],B[N],C[N],st[N],sum;
inline ll Cross(poi A,poi B) { return A.x*B.y-A.y*B.x; }
inline db Dot(poi A,poi B) { return A.x*B.x+A.y*B.y; }
inline db Len(poi A) { return sqrt(Dot(A,A)); }
inline bool cmp(const poi &A,const poi &B) { return Cross(A,B)>||(Cross(A,B)==&&Len(A)<Len(B)); }
void Tubao(poi *P,int &tot)
{
sort(P+,P+tot+); sum=sum+P[];/*如果此时求的是C的凸包P[1]=(0,0)没有贡献*/ for(int i=tot;i>=;i--) P[i]=P[i]-P[];
sort(P+,P+tot+,cmp); int Top=;
for(int i=;i<=tot;st[++Top]=P[i],i++)
while(Top> && Cross(P[i]-st[Top-],st[Top]-st[Top-])>= ) Top--;
tot=Top; for(int i=;i<=tot;i++) P[i]=st[i];
}
int check(poi *P,int tot,poi A)
{
A=A-sum;
if(Cross(A,P[])>||Cross(P[tot],A)>) return ;
int pos=lower_bound(P+,P+tot+,A,cmp)-P-; if(pos==tot) return ;
return Cross(A-P[pos],P[pos+]-P[pos])<=;
}
int n,m,T,Q;
int main()
{
n=read(),m=read(),Q=read();
for(int i=;i<=n;i++) A[i].x=read(),A[i].y=read();
for(int i=;i<=m;i++) B[i].x=-read(),B[i].y=-read();
Tubao(A,n); Tubao(B,m);
int la=,lb=; C[++T]=A[]+B[];
while(la<=n||lb<=m)
{
poi p1=A[la%n+]+B[(lb-)%m+],p2=A[(la-)%n+]+B[lb%m+];
if(Cross(p1-C[T],p2-C[T])>=) la++,C[++T]=p1;
else lb++,C[++T]=p2;
}
Tubao(C,T);
for(int i=;i<=Q;i++)
{
int x=read(),y=read();
printf("%d\n",check(C,T,poi(x,y)));
}
return ;
}
BZOJ 5317: [Jsoi2018]部落战争的更多相关文章
- 【BZOJ5317】[JSOI2018]部落战争(凸包,闵可夫斯基和)
[BZOJ5317][JSOI2018]部落战争(凸包,闵可夫斯基和) 题面 BZOJ 洛谷 题解 很明显我们只需要两个凸包\(A,B\). 假设询问给定的方向向量是\(v\). 那么现在就是判断\( ...
- 2019.02.21 bzoj5317: [Jsoi2018]部落战争(凸包+Minkowski和)
传送门 题意:qqq次询问把一个凸包整体加一个向量(x,y)(x,y)(x,y)之后是否与另外一个凸包相交. 思路:转化一下发现只要会求A+B={v⃗=a⃗+b⃗∣a⃗∈A,b⃗∈B}A+B=\{\v ...
- BZOJ5317 JSOI2018部落战争(凸包)
即询问凸包是否有交.这显然可以直接求半平面交,但是复杂度O(q(n+m)),且没有什么优化空间. 更直接地表示,即相当于询问是否存在点a∈A,b∈B,使得a+d=b.移项,得到d=b-a.可以发现等式 ...
- [BZOJ5317][JSOI2018]部落战争(闵可夫斯基和)
对于点集$A$,$B$,闵可夫斯基和$C=\{(x1+x2,y1+y2)|(x1,x2)\in A,(y1,y2)\in B\}$.由此可知,对于两个凸包$A$,$B$的闵可夫斯基和$C$满足,$C$ ...
- BZOJ 2150: 部落战争 最大流
2150: 部落战争 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem.php? ...
- BZOJ2150: 部落战争
题解: 把每个点拆成入点和出点,因为必须经过一次且只能经过一次.所以在两个点之间连一条上界=下界=1的边. 然后再s到每个入点连边,每个出点向t连边,点与点之间... 求最小流就可以过了... (感觉 ...
- BZOJ-2150部落战争(最小路径覆盖)
2150: 部落战争 Time Limit: 10 Sec Memory Limit: 259 MB Description lanzerb的部落在A国的上部,他们不满天寒地冻的环境,于是准备向A国 ...
- 「JSOI2018」战争
「JSOI2018」战争 解题思路 我们需要每次求给一个凸包加上一个向量后是否与另外一个凸包相交,也就是说是否存在 \[ b\in B,(b+w)\in A \] 这里 \(A, B\) 表示凸包内部 ...
- 【洛谷】4304:[TJOI2013]攻击装置【最大点独立集】【二分图】2172: [国家集训队]部落战争【二分图/网络流】【最小路径覆盖】
P4304 [TJOI2013]攻击装置 题目描述 给定一个01矩阵,其中你可以在0的位置放置攻击装置. 每一个攻击装置(x,y)都可以按照“日”字攻击其周围的8个位置(x-1,y-2),(x-2,y ...
随机推荐
- 开发一个chrome插件:将百度搜索热点屏蔽掉!
每次百度搜索,搜索结果的右边总是出现些乱七八糟的搜索热点(推的都是些什么玩意,高校替课和我有毛关系,几个悲伤的热点我用星号顶掉了). 强迫症想把它隐藏掉,我用的是chrome浏览器,受adblock( ...
- postman导入接口
给大家说一个poatman导入接口的好办法,平常要是想在postman上模拟接口,如果复杂的很难配,其实有一个很简单的方法: 现在我模拟一下百度搜索时历史记录的接口: 点击Copy as cUrl 然 ...
- msyql 优化之五不要
1.尽量不要有空判断的语句,因为空判断将导致全表扫描,而不是索引扫描. 对于空判断这种情况,可以考虑对这个列创建数据库默认值 //空判断将导致全表扫描 select small_id from sma ...
- Codeforces 960D Full Binary Tree Queries ( 思维 && 模拟 )
题意 : 给出一颗无限层的满二叉树,然后每个值为 X (根的 X 等于 1 ) 左孩子的值是 2*X,右孩子的值是 2*X+1 ,现在有两种操作,(1, x,k) 表示将 x 所在层的所有节点整体向右 ...
- 2018百度之星初赛B轮 rect
rect Accepts: 1654 Submissions: 2948 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131 ...
- luogu P1352 没有上司的舞会 x
P1352 没有上司的舞会 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员 ...
- 洛谷P3943 星空——题解
一道很好的锻炼思维难度的题,如果您能在考场上直接想出来的话,提高组450分以上就没问题了吧.(别像作者一样看了好几篇题解才勉强会) 先提取出题目大意:给定一个长度n<=40000的01串,其中1 ...
- oracle SQL查询number字段精度丢失之解决方法
解决办法: -- 3.3:表示原始数据 --fm9999999990.0000:表示保留到小数点后4位,若不存在则用0补位. ),'fm9999999990.0000') as demo from d ...
- sqli-labs(27a)
0X01测试闭合 ?id=" 报错 ?id="" 正常 0X02构造语句爆数据库名称 ?id= 和27关一样 只是 ’ 变成了 ” 其他语法就是打组合拳 0X03组合拳 ...
- spring cloud:hystrix-dashboard-turbine
hystrix-dashboard-turbine-server 1. File-->new spring starter project 2.add dependency <parent ...