这道题是几天前水过去的,现在快没印象了,水一发。

首先我们看到它让求解的是最长的值域 连续段长度,很好。

然后就想到了山海经,但但是我还没有做。

然后又想到了很久以前的一次考试的T3旅馆hotel(我是用暴力直接过的QAQ),正解也是线段树。

但是我还是想不到用线段树,因为我单纯的认为当前在学莫队就只会用到莫队。

后来还是问了同学。

然后就很简单了。

我们考虑询问区间的这类操作。

一种做法是各种神仙树套树解决区间问题。

另一种骗分做法就是莫队了。

不会莫队。。出门左拐(逃

那么这道题思路就可以出来了:莫队操作,每次在值域线段树这个位置的数上位置插入“1”,删除减少“1”即可,然后直接答案就是[1,n]的最长连续段长。

如果你做过类似的线段树的题,这种东西就很简单了喂。

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=5e4+;
inline int read(){
int x=,f=;char ch=getchar();
while(ch<''||ch>'') f=(ch=='-')?-:,ch=getchar();
while(ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x*f;
} int n,m,blo;
int col[N],bel[N],ans[N];
struct node{
int l,r,ord;
inline friend bool operator<(node a,node b){
return (bel[a.l] ^ bel[b.l]) ? bel[a.l] < bel[b.l] : ((bel[a.l] & ) ? a.r < b.r : a.r > b.r);
}
}q[N];
struct Seg_Tree{
#define lch k<<1
#define rch k<<1|1
struct Node{
int lmax,rmax,mmax;
int len;
}tr[N<<];
inline void Build(int k,int l,int r){
tr[k].len=r-l+;
if(l==r) return;
int mid=(l+r)>>;
Build(lch,l,mid);Build(rch,mid+,r);
}
inline void up(int k){
tr[k].lmax=tr[lch].lmax;
tr[k].rmax=tr[rch].rmax;
if(tr[lch].lmax==tr[lch].len) tr[k].lmax+=tr[rch].lmax;
if(tr[rch].rmax==tr[rch].len) tr[k].rmax+=tr[lch].rmax;
tr[k].mmax=max(max(tr[lch].mmax,tr[rch].mmax),tr[lch].rmax+tr[rch].lmax);
}
inline void Insert(int k,int l,int r,int x){
if(l==x&&r==x){
tr[k].lmax=;tr[k].rmax=;tr[k].mmax=;
return;
}
int mid=(l+r)>>;
if(x<=mid)Insert(lch,l,mid,x);
else Insert(rch,mid+,r,x);
up(k);
}
inline void Erase(int k,int l,int r,int x){
if(l==x&&r==x){
tr[k].lmax=;tr[k].rmax=;tr[k].mmax=;
return;
}
int mid=(l+r)>>;
if(x<=mid)Erase(lch,l,mid,x);
else Erase(rch,mid+,r,x);
up(k);
}
}str; int main(){
n=read();
m=read();
blo=(int)sqrt(n)+;
str.Build(,,n);
for(int i=;i<=blo;++i)
for(int j=;j<=blo;++j)
{bel[(i-)*blo+j]=i;if((i-)*blo+j==n) break;}
for(int i=;i<=n;++i) col[i]=read();
for(int i=;i<=m;++i){
q[i].l=read();
q[i].r=read();
q[i].ord=i;
}
sort(q+,q+m+);
register int l=q[].l,r=q[].r;
for(int i=l;i<=r;++i) str.Insert(,,n,col[i]);
for(int i=;i<=m;++i){
while(r<q[i].r) str.Insert(,,n,col[++r]);
while(l>q[i].l) str.Insert(,,n,col[--l]);
while(l<q[i].l) str.Erase(,,n,col[l++]);
while(r>q[i].r) str.Erase(,,n,col[r--]);
ans[q[i].ord]=str.tr[].mmax;
}
for(int i=;i<=m;++i) printf("%d\n",ans[i]);
return ;
}

upd:回滚莫队真香。

[bzoj4358]permu:莫队+线段树/回滚莫队的更多相关文章

  1. [BZOJ4358]Permu(回滚莫队)

    [BZOJ4358]Permu(回滚莫队) 题面 给出一个长度为n的排列P(P1,P2,...Pn),以及m个询问.每次询问某个区间[l,r]中,最长的值域连续段长度. 分析 最简单的方法显然是用线段 ...

  2. [CSP-S模拟测试]:ants(回滚莫队)

    题目描述 然而贪玩的$dirty$又开始了他的第三个游戏. $dirty$抓来了$n$只蚂蚁,并且赋予每只蚂蚁不同的编号,编号从$1$到$n$.最开始,它们按某个顺序排成一列.现在$dirty$想要进 ...

  3. 「JOISC 2014 Day1」历史研究 --- 回滚莫队

    题目又臭又长,但其实题意很简单. 给出一个长度为\(N\)的序列与\(Q\)个询问,每个询问都对应原序列中的一个区间.对于每个查询的区间,设数\(X_{i}\)在此区间出现的次数为\(Sum_{X_{ ...

  4. 洛谷 P6072 -『MdOI R1』Path(回滚莫队+01-trie)

    题面传送门 又是 ix35 神仙出的题,先以 mol 为敬 %%% 首先预处理出根节点到每个点路径上权值的异或和 \(dis_i\),那么两点 \(a,b\) 路径上权值的异或和显然为 \(dis_a ...

  5. LOJ.6504.[雅礼集训2018 Day5]Convex(回滚莫队)

    LOJ 莫队.发现只需要维护前驱后继就可以了. 但是加入一个点需要找到它当前的前驱后继,很麻烦还带个\(\log\). 但是如果只有删除某个点,只需要更新一下它的前驱后继即可. 用回滚莫队就好惹. 撤 ...

  6. Codeforces 666E E - Forensic Examination SA + 莫队 + 线段树

    E - Forensic Examination 我也不知道为什么这个复杂度能过, 而且跑得还挺快, 数据比较水? 在sa上二分出上下界, 然后莫队 + 线段树维护区间众数. #include< ...

  7. BZOJ.4241.历史研究(回滚莫队 分块)

    题目链接 \(Description\) 长度为n的数列,m次询问,每次询问一段区间最大的 \(A_i*tm_i\) (重要度*出现次数) \(Solution\) 好像可以用莫队做,但是取max的操 ...

  8. 洛谷P3246 序列 [HNOI2016] 莫队/线段树+扫描线

    正解:莫队/线段树+扫描线 解题报告: 传送门! 似乎是有两种方法的,,,所以分别港下好了QAQ 第一种,莫队 看到这种询问很多区间之类的就会自然而然地想到莫队趴?然后仔细思考一下,发现复杂度似乎是欧 ...

  9. 2018.09.26 bzoj5218: [Lydsy2017省队十连测]友好城市(回滚莫队)

    传送门 比较简单的一道回滚莫队吧. 每次询问用bitset优化kosaraju统计答案. 就是有点难调. 然后向dzyo学长学习了回滚莫队的一种简洁的实现方式,就是直接建立一个sqrt(m)∗sqrt ...

随机推荐

  1. 阶段3 2.Spring_03.Spring的 IOC 和 DI_8 spring中bean的细节之生命周期

    区分单例还是多例对象 单例的几个状态 初始化方法和销毁方法 设置成我们定义的方法 测试 有创建和初始化.但是没有销毁,.对象一直没有销毁的方法 main方法是一切应用程序的入门.当main方法结束后. ...

  2. 十九:jinja2之set和with语句定义变量

    set jinja2模板内部可以用set定义变量,只要定义了这个变量,在后面的代码中都可以使用此变量 with 如果想让定义的变量只在部分作用域内有效,则不嫩更实用set,需使用with定义,with ...

  3. Linux常用命令touch/grep/mkdir/rm/cat/find/cp/mv/tar/gzip等

    Unix-->Linux(Ubuntu,Redhat,suse,fedora) 1. cd - :回到上次执行的那个目录(相当于“回看”的功能) 2. touch :创建一个文件,可以是任意后缀 ...

  4. H5、原生app、混合开发三者比较

    一.概念 a) H5:即Html5,接触过互联网的都知道html,所以很明显h5是html的第5次重大修改的一项超文本标记语言的标准协议. b) 原生:使用原生制作APP(Native app),即在 ...

  5. unieap platform eclipse.ini vm设置

    -vm C:\Program Files (x86)\Java\jdk1..0_45\bin\javaw.exe -startup plugins/org.eclipse.equinox.launch ...

  6. 【VS开发】使用WinPcap编程(4)——把网络数据包存储到一个文件中

    这里用到的数据结构是pcap_dumper_t,这也是一个相当于文件描述符的东西,我们在用的时候先指定pcap_dumper_t *dumpfp; 使用两个函数来存储网络数据,一个是pcap_dump ...

  7. [Python3] 028 常用模块 datetime

    目录 datetime 1. datetime.date 2. datetime.time 3. datetime.datetime 4. datetime.timedelta 补充 datetime ...

  8. seata项目结构

    1. 概述 在拉取 Seata 项目后,我们会发现拆分了好多 Maven 项目.

  9. 洛谷 P1169 棋盘制作 题解

    题面 这道题可以分成两部分来处理: 第一部分: 设f[i][j]表示右下角以(i,j)结尾的最大正方形的边长. 显然f[i][j]=min(f[i][j-1],f[i-1][j-1],f[i-1][j ...

  10. Luogu P2501 [HAOI2006]数字序列

    题目 首先把\(a\)改成严格单调上升等于把\(a_i-i\)改成单调不降. 那么第一问可以直接做LIS,答案就是\(n-\)LIS的长度. 同时我们记录一下序列中每个位置结尾的LIS长度. 第二问我 ...