save——model模块保存和载入使用简单例子
https://www.w3xue.com/exp/article/201812/10995.html
=====1====实践模型存入
import tensorflow as tf
from tensorflow import saved_model as sm
# 首先定义一个极其简单的计算图
X = tf.placeholder(tf.float32, shape=(3, ))
scale = tf.Variable([10, 11, 12], dtype=tf.float32)
y = tf.multiply(X, scale)
# 在会话中运行
with tf.Session() as sess:
sess.run(tf.initializers.global_variables())
value = sess.run(y, feed_dict={X: [1., 2., 3.]})
print(value) # 准备存储模型
path = '/home/×××/tf_model/model_1'
builder = sm.builder.SavedModelBuilder(path) # 构建需要在新会话中恢复的变量的 TensorInfo protobuf
X_TensorInfo = sm.utils.build_tensor_info(X)
scale_TensorInfo = sm.utils.build_tensor_info(scale)
y_TensorInfo = sm.utils.build_tensor_info(y)
# 构建 SignatureDef protobuf
SignatureDef = sm.signature_def_utils.build_signature_def(
inputs={'input_1': X_TensorInfo, 'input_2': scale_TensorInfo},
outputs={'output': y_TensorInfo},
method_name='what'
)
# 将 graph 和变量等信息写入 MetaGraphDef protobuf
# 这里的 tags 里面的参数和 signature_def_map 字典里面的键都可以是自定义字符串,TensorFlow 为了方便使用,不在新地方将自定义的字符串忘记,可以使用预定义的这些值
builder.add_meta_graph_and_variables(sess, tags=[sm.tag_constants.TRAINING],
signature_def_map={sm.signature_constants.CLASSIFY_INPUTS: SignatureDef}
)
# 将 MetaGraphDef 写入磁盘
builder.save() =====222===模型导入 import tensorflow as tf
from tensorflow import saved_model as sm
# 需要建立一个会话对象,将模型恢复到其中
with tf.Session() as sess:
path = '/home/×××/tf_model/model_1'
MetaGraphDef = sm.loader.load(sess, tags=[sm.tag_constants.TRAINING], export_dir=path)
# 解析得到 SignatureDef protobuf
SignatureDef_d = MetaGraphDef.signature_def
SignatureDef = SignatureDef_d[sm.signature_constants.CLASSIFY_INPUTS]
# 解析得到 3 个变量对应的 TensorInfo protobuf
X_TensorInfo = SignatureDef.inputs['input_1']
scale_TensorInfo = SignatureDef.inputs['input_2']
y_TensorInfo = SignatureDef.outputs['output']
# 解析得到具体 Tensor
# .get_tensor_from_tensor_info() 函数中可以不传入 graph 参数,TensorFlow 自动使用默认图
X = sm.utils.get_tensor_from_tensor_info(X_TensorInfo, sess.graph)
scale = sm.utils.get_tensor_from_tensor_info(scale_TensorInfo, sess.graph)
y = sm.utils.get_tensor_from_tensor_info(y_TensorInfo, sess.graph)
print(sess.run(scale))
print(sess.run(y, feed_dict={X: [3., 2., 1.]}))
# 输出
[10. 11. 12.]
[30. 22. 12.]
========11111======实践模型存入(无格式,代码没对齐)
import tensorflow as tf
from tensorflow import saved_model as sm
# 首先定义一个极其简单的计算图
X = tf.placeholder(tf.float32, shape=(3, ))
scale = tf.Variable([10, 11, 12], dtype=tf.float32)
y = tf.multiply(X, scale)
# 在会话中运行
with tf.Session() as sess:
sess.run(tf.initializers.global_variables())
value = sess.run(y, feed_dict={X: [1., 2., 3.]})
print(value)
# 准备存储模型
path = '/home/×××/tf_model/model_1'
builder = sm.builder.SavedModelBuilder(path)
# 构建需要在新会话中恢复的变量的 TensorInfo protobuf
X_TensorInfo = sm.utils.build_tensor_info(X)
scale_TensorInfo = sm.utils.build_tensor_info(scale)
y_TensorInfo = sm.utils.build_tensor_info(y)
# 构建 SignatureDef protobuf
SignatureDef = sm.signature_def_utils.build_signature_def(
inputs={'input_1': X_TensorInfo, 'input_2': scale_TensorInfo},
outputs={'output': y_TensorInfo},
method_name='what'
)
# 将 graph 和变量等信息写入 MetaGraphDef protobuf
# 这里的 tags 里面的参数和 signature_def_map 字典里面的键都可以是自定义字符串,TensorFlow 为了方便使用,不在新地方将自定义的字符串忘记,可以使用预定义的这些值
builder.add_meta_graph_and_variables(sess, tags=[sm.tag_constants.TRAINING],
signature_def_map={sm.signature_constants.CLASSIFY_INPUTS: SignatureDef}
)
# 将 MetaGraphDef 写入磁盘
builder.save()
==================222222===========================================
=========模型导入
这样我们就把模型整体存储到了磁盘中,而且我们将三个变量 X, scale, y 全部序列化后存储到了其中,所以恢复模型时便可以将他们完全解析出来:
import tensorflow as tf
from tensorflow import saved_model as sm
# 需要建立一个会话对象,将模型恢复到其中
with tf.Session() as sess:
path = '/home/×××/tf_model/model_1'
MetaGraphDef = sm.loader.load(sess, tags=[sm.tag_constants.TRAINING], export_dir=path)
# 解析得到 SignatureDef protobuf
SignatureDef_d = MetaGraphDef.signature_def
SignatureDef = SignatureDef_d[sm.signature_constants.CLASSIFY_INPUTS]
# 解析得到 3 个变量对应的 TensorInfo protobuf
X_TensorInfo = SignatureDef.inputs['input_1']
scale_TensorInfo = SignatureDef.inputs['input_2']
y_TensorInfo = SignatureDef.outputs['output']
# 解析得到具体 Tensor
# .get_tensor_from_tensor_info() 函数中可以不传入 graph 参数,TensorFlow 自动使用默认图
X = sm.utils.get_tensor_from_tensor_info(X_TensorInfo, sess.graph)
scale = sm.utils.get_tensor_from_tensor_info(scale_TensorInfo, sess.graph)
y = sm.utils.get_tensor_from_tensor_info(y_TensorInfo, sess.graph)
print(sess.run(scale))
print(sess.run(y, feed_dict={X: [3., 2., 1.]}))
# 输出
[10. 11. 12.]
[30. 22. 12.]
============333333讲解=
https://github.com/Jerryzhangzhao/DL_tensorflow/blob/master/save%20and%20restore%20model/use%20saved%20model/save_and_restore_by_savedmodelbuilder.py
save——model模块保存和载入使用简单例子的更多相关文章
- 【NLP学习其五】模型保存与载入的注意事项(记问题No module named 'model')
这是一次由于路径问题(找不到模型)引出模型保存问题的记录 最近,我试着把使用GPU训练完成的模型部署至预发布环境时出现了一个错误,以下是log节选 unpickler.load() ModuleNot ...
- Django之model模块创建表完整过程
Django中,与数据库相关的模块是model模块,它提供了一种简单易操作的API方式与数据库交互,它是通过ORM映射的方式来操作数据库,一个类对应数据库一张表,一个类属性,对应该表的一个字段,一个实 ...
- (原+译)pytorch中保存和载入模型
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/8108466.html 参考网址: http://pytorch.org/docs/master/not ...
- Tensorflow 保存和载入训练过程
本节涉及点: 保存训练过程 载入保存的训练过程并继续训练 通过命令行参数控制是否强制重新开始训练 训练过程中的手动保存 保存训练过程前,程序征得同意 一.保存训练过程 以下方代码为例: import ...
- TensorFlow 模型的保存与载入
参考学习博客: # https://www.cnblogs.com/felixwang2/p/9190692.html 一.模型保存 # https://www.cnblogs.com/felixwa ...
- 7.keras-模型保存和载入
keras-模型保存和载入 1.数据的载入与预处理 import numpy as np from keras.datasets import mnist from keras.utils impor ...
- Django学习之四:Django Model模块
目录 Django Model 模型 MODEL需要在脑子里记住的基础概念 区分清楚,必须不能混淆的 class Meta 内嵌元数据定义类 简单model创建实例 数据源配置 接着通过models在 ...
- docker保存、载入、导出、导入
保存和载入 拿到CONTAINER ID docker ps -a 通过容器id生成镜像dockerlinuxdemoweb:update docker commit b33633d12871 doc ...
- Docker 本地导入镜像/保存镜像/载入镜像/删除镜像
1.Docker导入本地镜像 有时候我们自己在本地或者其它小伙伴电脑上拷贝了一份镜像,有了这个镜像之后,我们可以把本地的镜像导入,使用docker import 命令. 例如这里下载了一个 aliba ...
随机推荐
- Java中的字符串常量池,栈和堆的概念
问题:String str = new String(“abc”),“abc”在内存中是怎么分配的? 答案是:堆内存.(Tips:jdk1.8 已经将字符串常量池放在堆内存区) 题目考查的为Ja ...
- 线程池ThreadPool
在面向对象编程中,经常会面对创建对象和销毁对象的情况,如果不正确处理的话,在短时间内创建大量对象然后执行简单处理之后又要销毁这些刚刚建立的对象,这是一个非常消耗性能的低效行为,所以很多面向对象语言中在 ...
- PHP读取txt文件的内容并赋值给数组的代码
使用file_get_contents()获取txt文件的内容,然后通过explode()把获得的字符串转化为数组. 获得数组长度可以使用count()函数 <?php $file = 'key ...
- BZOJ 3876 统一下界上下界费用流
//Mcmf LargeDumpling #include<iostream> #include<cstdio> #include<cstdlib> #includ ...
- poi导出excel数据量过大
问题:使用poi导出excel,数据量过大导致内存溢出 解决思路:1.多sheet导出 2.生成多个excel打包下载 3.生成csv下载 本文使用的是第二个思路,代码如下: poiUtil工具类 p ...
- 【python基础】字符串方法汇总
一.声明 0-多个字符组成的有序序列; 二.特点 1. 字符串是一个不可变的数据类型 2.字符串是有序的 三.索引 下标:'abcde' 1.从左到右, 0, 1,2, ... 2.从右到左, 索引值 ...
- Django-ORM和MySQL事务及三大范式介绍
Django中操作操作数据库这里需要改一个数据: 模型层:就是与跟数据库打交道 ORM查询: 一.单表操作必知必会13条: orm默认都是惰性查询: 1.all() 查询所有 2.filter() 筛 ...
- Atcoder Regular Contest 066 F genocide【JZOJ5451】
题目 分析 \(s[i]\)表示a前缀和. 设\(f[i]\)表示做完了1~i的友谊颗粒的最优值(不一定选i),那么转移方程为 \[f[i]=max\{f[i-1],max\{f[j]-s[i]+s[ ...
- linux查看网关
Linux下查看网关方法:route -n ip route show traceroute www.prudentwoo.com -s 100 第一行就是自己的默认网关 netstat -r mor ...
- [CF1223G/1240E]Wooden Raft 题解
前言 上午一场模拟赛(发布前很久,因为这题题解太长了),发现T3特别珂怕,打开题解,发现一行字: 不要再问了,再问就是CF 1240E 当场去世.jpg. 在下文中,我们记 \(A\) 为 \(a\) ...