[hadoop](2) MapReducer:Distributed Cache
前言
本章主要内容是讲述hadoop的分布式缓存的使用,通过分布式缓存可以将一些需要共享的数据在各个集群中共享。
准备工作
数据集:ufo-60000条记录,这个数据集有一系列包含下列字段的UFO目击事件记录组成,每条记录的字段都是以tab键分割,请看http://www.cnblogs.com/cafebabe-yun/p/8679994.html
- sighting date:UFO目击事件发生时间
- Recorded date:报告目击事件的时间
- Location:目击事件发生的地点
- Shape:UFO形状
- Duration:目击事件持续时间
- Dexcription:目击事件的大致描述
例子:
19950915 19950915 Redmond, WA 6 min. Young man w/ 2 co-workers witness tiny, distinctly white round disc drifting slowly toward NE. Flew in dir. 90 deg. to winds.
需要共享的数据:州名缩写与全称的对应关系
数据:
AL Alabama
AK Alaska
AZ Arizona
AR Arkansas
CA California
Distributed Cache介绍
作用:使用分布式缓存,可以将map和reduce任务要用的通用只读文件在集群所有节点共享。
Distributed Cache的使用
题目:使用共享数据替换州名缩写
- 将上面提到的共享数据保存为 states.txt 文件
- 将states.txt文件上传到hadoop
hadoop dfs -put states.txt states.txt
- 编写 UFORecordValidationMapper.java

import java.io.IOException; import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
import org.apache.hadoop.mapred.lib.*; public class UFORecordValidationMapper extends MapReduceBase implements Mapper<LongWritable, Text, LongWritable, Text> {
public void map(LongWritable key, Text value, OutputCollector<LongWritable, Text> output, Reporter reporter) throws IOException {
String line = value.toString();
if(validate(line)) {
output.collect(key, value);
}
} private boolean validate(String str) {
String[] parts = str.split("\t");
if(parts.length != 6) {
return false;
}
return true;
}
}

- 编写 UFOLocation2.java
import java.io.*;
import java.util.*;
import java.net.*;
import java.util.regex.*; import org.apache.hadoop.conf.*;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.filecache.DistributedCache;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
import org.apache.hadoop.mapred.lib.*; public class UFOLocation2 {
public static class MapClass extends MapReduceBase implements Mapper<LongWritable, Text, Text, LongWritable> {
private final static LongWritable one = new LongWritable(1);
private static Pattern locationPattern = Pattern.compile("[a-zA-Z]{2}[^a-zA-Z]*$");
private Map<String, String> stateNames; @Override
public void configure(JobConf job) {
try {
Path[] cacheFiles = DistributedCache.getLocalCacheFiles(job);
setupStateMap(cacheFiles[0].toString());
} catch (IOException e) {
System.err.println("Error reading state file.");
System.exit(1);
}
} private void setupStateMap(String fileName) throws IOException {
Map<String, String> stateCache = new HashMap<String, String>();
BufferedReader reader = new BufferedReader(new FileReader(fileName));
String line = null;
while((line = reader.readLine()) != null) {
String[] splits = line.split("\t");
stateCache.put(splits[0], splits[1]);
}
stateNames = stateCache;
} @Override
public void map(LongWritable key, Text value, OutputCollector<Text, LongWritable> output, Reporter reporter) throws IOException {
String line = value.toString();
String[] fields = line.split("\t");
String location = fields[2].trim();
if(location.length() >= 2) {
Matcher matcher = locationPattern.matcher(location);
if(matcher.find()) {
int start = matcher.start();
String state = location.substring(start, start + 2);
output.collect(new Text(lookupState(state.toUpperCase())), one);
}
}
} private String lookupState(String state) {
String fullName = stateNames.get(state);
if(fullName == null || "".equals(fullName)) {
fullName = state;
}
return fullName;
}
} public static void main(String...args) throws Exception {
Configuration config = new Configuration();
JobConf conf = new JobConf(config, UFOLocation2.class);
conf.setJobName("UFOLocation2");
DistributedCache.addCacheFile(new URI("/user/root/states.txt"), conf);
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(LongWritable.class); JobConf mapconf1 = new JobConf(false);
ChainMapper.addMapper(conf, UFORecordValidationMapper.class, LongWritable.class, Text.class, LongWritable.class, Text.class, true, mapconf1);
JobConf mapconf2 = new JobConf(false);
ChainMapper.addMapper(conf, MapClass.class, LongWritable.class, Text.class, Text.class, LongWritable.class, true, mapconf2);
conf.setMapperClass(ChainMapper.class);
conf.setCombinerClass(LongSumReducer.class);
conf.setReducerClass(LongSumReducer.class); FileInputFormat.setInputPaths(conf, args[0]);
FileOutputFormat.setOutputPath(conf, new Path(args[1]));
JobClient.runJob(conf);
}
}
- 编译上述两个文件
javac UFORecordValidationMapper.java UFOLocation2.java
- 将编译好的文件打包成jar
jar cvf ufo.jar UFO*class
- 提交打包好的jar包到hadoop上运行
hadoop jar ufo.jar UFOLocation2 ufo.tsv output
- 从hadoop上获取结果到本地
hadoop dfs -get output/part-00000 ufo_result.txt
- 查看结果
more ufo_result.txt
[hadoop](2) MapReducer:Distributed Cache的更多相关文章
- [转] .net core Session , Working with a distributed cache
本文转自:https://docs.microsoft.com/en-us/aspnet/core/performance/caching/distributed By Steve Smith+ Di ...
- Distributed Cache Coherence at Scalable Requestor Filter Pipes that Accumulate Invalidation Acknowledgements from other Requestor Filter Pipes Using Ordering Messages from Central Snoop Tag
A multi-processor, multi-cache system has filter pipes that store entries for request messages sent ...
- Hadoop之 MapReducer工作过程
1. 从输入到输出 一个MapReducer作业经过了input,map,combine,reduce,output五个阶段,其中combine阶段并不一定发生,map输出的中间结果被分到reduce ...
- spark hadoop 对比 Resilient Distributed Datasets
hadoop 迭代消耗大 每次迭代启动一个完整的MapReduce作业 spark 首要目标就是避免运算时 过多的网络和磁盘IO开销 Resilient Distributed Datasets ht ...
- Flink分布式缓存Distributed Cache
1 分布式缓存 Flink提供了一个分布式缓存,类似于hadoop,可以使用户在并行函数中很方便的读取本地文件,并把它放在taskmanager节点中,防止task重复拉取. 此缓存的工作机制如下:程 ...
- Distributed Cache(分布式缓存)-SqlServer
分布式缓存是由多个应用服务器共享的缓存,通常作为外部服务存储在单个应用服务器上,常用的有SqlServer,Redis,NCache. 分布式缓存可以提高ASP.NET Core应用程序的性能和可伸缩 ...
- hadoop系列四:mapreduce的使用(二)
转载请在页首明显处注明作者与出处 一:说明 此为大数据系列的一些博文,有空的话会陆续更新,包含大数据的一些内容,如hadoop,spark,storm,机器学习等. 当前使用的hadoop版本为2.6 ...
- Hadoop官方文档翻译——MapReduce Tutorial
MapReduce Tutorial(个人指导) Purpose(目的) Prerequisites(必备条件) Overview(综述) Inputs and Outputs(输入输出) MapRe ...
- hadoop常见问题汇集
1 hadoop conf.addResource http://stackoverflow.com/questions/16017538/how-does-configuration-addreso ...
随机推荐
- MySQL Cluster 与 MongoDB 复制群集分片设计及原理
分布式数据库计算涉及到分布式事务.数据分布.数据收敛计算等等要求 分布式数据库能实现高安全.高性能.高可用等特征,当然也带来了高成本(固定成本及运营成本),我们通过MongoDB及MySQL Clus ...
- win10编写8086汇编程序(dosbox)
有部分同学反馈.在使用edit命令来编写汇编程序时遇到问题,由于模拟器没有edit程序,所以要换一种方式编写源程序.下面是完整的演示. 视频链接:http://www.bilibili.com/vid ...
- 浅谈Java反射机制 之 获取类的 方法 和 属性(包括构造函数)
上一篇 获取 类 的字节码文件 我们讲到了获取类的字节码文件的三种方法 第三种方法通过getClass("全路径名")获取字节码文件最符合要求 1.获取构造方法 先贴上我们要获取的 ...
- mooc-IDEA postfix--007
十三.IntelliJ IDEA -postfix 代码中输入: 总结常用的postfix: 1.for (<=>100.fori) 2.sout (<=>System.ou ...
- IQueryable在LINQ中
IQueryable接口定义如下: // 摘要: // 提供对未指定数据类型的特定数据源的查询进行计算的功能. public interface IQueryable : IEnumerable { ...
- Mybatis-基本步骤
1.1Mybatis框架概述 Mybatis是基于Java的持久层框架,内部封装了jdbc,使开发者只需关注sql语句本身,而不需要花费精力去处理加载驱动.创建连接.创建Statement等繁杂的过程 ...
- dfs找环
http://acm.hdu.edu.cn/showproblem.php?pid=6736 Forest Program Time Limit: 2000/1000 MS (Java/Others) ...
- c知识点总结2
函数 int func(int x){ //x:形式参数 .... } int main(){ .... int res=func(z); //z:实际参数 } 实参与形参具有不同的存储单元, 实参与 ...
- Linux终端复用工具tmux的使用和配置
1. 会话管理 新建会话 $ tmux new -s session-one -d -s:指定回话名称 -d:会话在后台运行 查看所有会话 $ tmux ls session-one: 1 windo ...
- win32 socket 编程(三)——TCP/IP
一.TCP/IP解析 TCP/IP协议的核心部分是传输层协议(TCP.UDP),网络层协议(IP)和物理接口层,这三层通常是在操作系统内核中实现.因此用户一般不涉及.编程时,编程界面有两种形式: 1. ...