编译caffe-gpu-cuda及cudnn-tar 下载地址
y下载
https://github.com/BVLC/caffe
https://github.com/BVLC/caffe/archive/master.zip
gcc
caffe安装 有2个问题 :
1,镜像系统类型,版本要求
2,是否使用cudnn(gpu) caffe要调用cudnn部分文件编译 (如用,cuda cudnn版本要求)
ubuntu1604-py35-nvidia-tensorflow1.14-cuda9.0-cudnn7.05
nvcc
2 nvcc -V
3 wget -O /etc/yum.repos.d/CentOS-Base.repo http://mirrors.aliyun.com/repo/Centos-7.repo
4 yum install wget
5 wget -O /etc/yum.repos.d/CentOS-Base.repo http://mirrors.aliyun.com/repo/Centos-7.repo
6 wget -P /etc/yum.repos.d/ http://mirrors.aliyun.com/repo/epel-7.repo
7 yum clean all
8 yum makecache
9 yum install protobuf-devel leveldb-devel snappy-devel opencv-devel boost-devel hdf5-devel
10 yum install gflags-devel glog-devel lmdb-devel make
11 export LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib64:/usr/local/cuda-9.0/extras/CUPTI/lib64:$LD_LIBRARY_PATH
12 export CUDA_HOME=/usr/local/cuda-9.0/
13 wget https://github.com/BVLC/caffe/archive/master.zip
14 unzip master.zip
15 yum install unzip
16 unzip master.zip
17 cd caffe-master/
18 ll
19 cd python/
20 ll
21 for req in $(cat requirements.txt); do pip install $req; done
22 yum install pip
23 yum install pip-devel
24 yum install python-pip
25 for req in $(cat requirements.txt); do pip install $req; done
26 c
27 for req in $(cat requirements.txt); do pip install -i https://mirrors.aliyun.com/pypi/simple/ $req; done
28 for req in $(cat requirements.txt); do pip install $req; done
29 wget https://www.python.org/ftp/python/3.6.4/Python-3.6.4.tar.xz
30 pwd
31 cd /usr/local/src/
32 ls
33 wget https://www.python.org/ftp/python/3.6.4/Python-3.6.4.tar.xz
34 xz -d Python-3.6.4.tar.xz
35 tar xvf Python-3.6.4.tar
36 cd Python-3.6.4
37 ./configure prefix=/usr/local/python3
38 make && make install
39 mv /usr/bin/python /usr/bin/python.bak
40 ln -s /usr/local/python3/bin/python3.6 /usr/bin/python
41 python -V
42 vi /usr/bin/yum
43 vi /usr/libexec/urlgrabber-ext-down
44 cd -
45 cd /caffe-master/python/
46 yum install python-pip3
47 yum install python-pip3-devel
48 yum install python3-pip
49 for req in $(cat requirements.txt); do pip install $req; done
50 python
51 cd /usr/local/src/
52 wget --no-check-certificate https://pypi.python.org/packages/source/s/setuptools/setuptools-19.6.tar.gz#md5=c607dd118eae682c44ed146367a17e26
53 tar -zxvf setuptools-19.6.tar.gz
54 cd setuptools-19.6
55 python3 setup.py build
56 python setup.py build
57 python setup.py install
58 ls /usr/local/python3/bin/pip3
59 ln -s /usr/local/python3/bin/pip3 /usr/bin/pip3
60 pip3 -V
61 cd /caffe-master/python/
62 ls
63 for req in $(cat requirements.txt); do pip3 install -i https://mirrors.aliyun.com/pypi/simple/ $req; done
64 for req in $(cat requirements.txt); do pip3 install $req; done
65 for req in $(cat requirements.txt); do pip3 install -i http://mirrors.aliyun.com/pypi/simple/ $req; done
66 vi ~/.pip/pip.conf
67 mkdir [global]
68 mkdir ~/.pip
69 vi ~/.pip/pip.conf
70 for req in $(cat requirements.txt); do pip3 install -i http://mirrors.aliyun.com/pypi/simple/ $req; done
71 for req in $(cat requirements.txt); do pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple $req; done
72 for req in $(cat requirements.txt); do pip install -i https://pypi.tuna.tsinghua.edu.cn/simple $req; done
73 python -m pip install --upgrade --force pip
74 easy_install -U setuptools
75 python -m pip install --upgrade --force pip
76 pip install --upgrade pip
77 for req in $(cat requirements.txt); do pip install -i https://pypi.tuna.tsinghua.edu.cn/simple $req; done
78 history
https://blog.csdn.net/kemgine/article/details/78781377
Caffe-GPU编译问题:nvcc fatal : Unsupported gpu architecture 'compute_20'
NVCC src/caffe/layers/bnll_layer.cu
nvcc fatal : Unsupported gpu architecture 'compute_20'
Makefile:594: recipe for target '.build_release/cuda/src/caffe/layers/bnll_layer.o' failed
make: *** [.build_release/cuda/src/caffe/layers/bnll_layer.o] Error 1
仔细查看了一下 Makefile.config 中 CUDA_ARCH 设置未按规定设置:
CUDA architecture setting: going with all of them.
For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.
For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.
For CUDA >= 9.0, comment the *_20 and *_21 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_20,code=sm_20
-gencode arch=compute_20,code=sm_21
-gencode arch=compute_30,code=sm_30
-gencode arch=compute_35,code=sm_35
-gencode arch=compute_50,code=sm_50
-gencode arch=compute_52,code=sm_52
-gencode arch=compute_60,code=sm_60
-gencode arch=compute_61,code=sm_61
-gencode arch=compute_61,code=compute_61
因为我装的是CUDA9.0所以把下面这两行删除就可以了
-gencode arch=compute_20,code=sm_20 \-gencode arch=compute_20,code=sm_21 \
Caffe安装错误及其解决方法
https://blog.csdn.net/jessir/article/details/71195115
caffe编译的问题解决:“cublas_v2.h: No such file or directory
具体来说:
CUDA7.5中的include、lib路径是安装目录下/usr/local/cuda-7.5/targets/x86_64-linux/下面的include和lib
将其分别添加到caffe根目录下Makefile.config中的"INCLUDE_DIRS"、“LIBRARY_DIRS”后面就可以了。
make all
make test
cudnn-8.0/9.0/10.0-linux-x64-v6.0/7.0/7.1/7.2/7.3/7.4.tgz下载
https://blog.csdn.net/xiangxianghehe/article/details/79177833
wget http://developer.download.nvidia.com/compute/redist/cudnn/v7.3.1/cudnn-9.2-linux-x64-v7.3.1.20.tgz #cuda9.2 cudnn7.3
wget http://developer.download.nvidia.com/compute/redist/cudnn/v7.2.1/cudnn-9.2-linux-x64-v7.2.1.38.tgz #cuda9.2 cudnn7.2
wget http://developer.download.nvidia.com/compute/redist/cudnn/v7.1.4/cudnn-9.2-linux-x64-v7.1.tgz #cuda9.2 cudnn 7.1
http://file.ppwwyyxx.com/nvidia/cudnn-9.2-linux-x64-v7.4.2.24.tgz
wget http://developer.download.nvidia.com/compute/redist/cudnn/v7.0.5/cudnn-9.1-linux-x64-v7.tgz # cuda9.1 cudnn7.0
wget http://developer.download.nvidia.com/compute/redist/cudnn/v7.1.4/cudnn-9.0-linux-x64-v7.1.tgz
wget http://developer.download.nvidia.com/compute/redist/cudnn/v7.3.0/cudnn-9.0-linux-x64-v7.3.0.29.tgz
make: /usr/local/cuda/bin/nvcc: Command not found
make: *** [.build_release/cuda/src/caffe/layers/absval_layer.o] Error 127
centos 7 安装caffe
https://blog.csdn.net/wqzghost/article/details/48264477
安装
https://juejin.im/post/5a0e819b6fb9a04524056583 在CentOS 7上安装Caffe
1.安装基础依赖库
sudo yum install protobuf-devel leveldb-devel snappy-devel opencv-devel boost-devel hdf5-devel
sudo yum install gflags-devel glog-devel lmdb-devel
2.安装CUDA
sudo rpm -i cuda-repo-rhel7-8-0-local-ga2-8.0.61-1.x86_64.rpm
sudo yum clean all
sudo yum install cuda
环境变量
export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64:/usr/local/cuda-8.0/extras/CUPTI/lib64:$LD_LIBRARY_PATH
export CUDA_HOME=/usr/local/cuda-8.0/
3.安装cuDNN
cp include/* /usr/local/cuda/include
cp lib64/* /usr/local/cuda/lib64
4.安装BLAS
sudo yum install atlas-devel
cd /usr/lib64/atlas
sudo ln -sv libsatlas.so.3.10 libcblas.so
sudo ln -sv libsatlas.so.3.10 libatlas.so
5.下载Caffe源码
git clone https://github.com/BVLC/caffe.git
6.安装python 依赖
进入caffe/python目录,安装requirements中依赖库
for req in $(cat requirements.txt); do pip install $req; done
7.编译
编辑Caffe 目录Makefile.config 文件,根据依赖库情况修改配置: 主要修改如下:
USE_CUDNN := 1
BLAS := atlas
BLAS_INCLUDE := /usr/include/atlas
BLAS_LIB := /usr/lib64/atlas
PYTHON_INCLUDE := /usr/include/python2.7 \
/usr/lib64/python2.7/site-packages/numpy/core/include
PYTHON_LIB := /usr/lib64
编译和测试Caffe,-j选项为编译并行线程数,一般为CPU核数
make all -j8
make test -j8
make runtest -j8
Caffe 使用示例
1.运行Caffe
进入Caffe 安装目录,执行./build/tools/caffe,可以根据caffe命令选项使用
./build/tools/caffe
caffe: command line brew
usage: caffe <command> <args>
commands:
train train or finetune a model
test score a model
device_query show GPU diagnostic information
time benchmark model execution time
2.MNIST 例子
进入Caffe目录,执行如下命令
下载数据集:
./data/mnist/get_mnist.sh
转换数据集:
./examples/mnist/create_mnist.sh
训练例子:
./examples/mnist/train_lenet.sh
训练输出示例如下:
安装caffe
yum install epel-release
yum install atlas-devel snappy-devel boost-devel leveldb leveldb-devel hdf5 hdf5-devel glog glog-devel gflags gflags-devel protobuf protobuf-devel opencv opencv-devel lmdb lmdb-devel
yum -y install gcc automake autoconf libtool make
安装参考,但是失败了
https://blog.csdn.net/qq_33144323/article/details/81261367
失败错误为
[root@0e04e413eadd caffe]# make all
CXX src/caffe/blob.cpp
In file included from ./include/caffe/common.hpp:19:0,
from ./include/caffe/blob.hpp:8,yum
from src/caffe/blob.cpp:4:
./include/caffe/util/device_alternate.hpp:34:23: fatal error: cublas_v2.h: No such file or directory
#include <cublas_v2.h>
^
compilation terminated.
make: *** [.build_release/src/caffe/blob.o] Error 1
yum install atlas-devel snappy-devel boost-devel leveldb leveldb-devel hdf5 hdf5-devel glog glog-devel gflags gflags-devel protobuf protobuf-devel opencv opencv-devel lmdb lmdb-devel
需求
jupyterlab 中使用caffe ,并且caffe能使用GPU, c++代码编写
centos7 下caffe GPU版的配置和TensorFlow gpu版本的安装
https://blog.csdn.net/qq_33144323/article/details/81261367
nvidia 官网
https://developer.nvidia.com/?destination=node/18866
centos 7 安装CUDA9.0 +CUDNN
https://www.jianshu.com/p/a201b91b3d96
编译caffe-gpu-cuda及cudnn-tar 下载地址的更多相关文章
- CUDA各版本官方下载地址
一.CUDA各版本官方下载地址 地址:https://developer.nvidia.com/cuda-toolkit-archive 二.说明 备忘,平时找个版本太难找了.
- ubuntu16.04+caffe+GPU+cuda+cudnn安装教程
步骤简述: 1.安装GPU驱动(系统适配,不采取手动安装的方式) 2.安装依赖(cuda依赖库,caffe依赖) 3.安装cuda 4.安装cudnn(只是复制文件加链接,不需要编译安装的过程) 5. ...
- 【软件安装与环境配置】ubuntu16.04+caffe+nvidia+CUDA+cuDNN安装配置
前言 博主想使用caffe框架进行深度学习相关网络的训练和测试,刚开始做,特此记录学习过程. 环境配置方面,博主以为最容易卡壳的是GPU的NVIDIA驱动的安装和CUDA的安装,前者尝试的都要吐了,可 ...
- 真实机下 ubuntu 18.04 安装GPU +CUDA+cuDNN 以及其版本选择(亲测非常实用)【转】
本文转载自:https://blog.csdn.net/u010801439/article/details/80483036 ubuntu 18.04 安装GPU +CUDA+cuDNN : 目前, ...
- 非root用户安装cuda和cudnn
1.根据自己的系统在官网下载cuda (选择runfile(local)) https://developer.nvidia.com/cuda-downloads 2.进入下载目录,并执行 sh cu ...
- 判断OpenCV是否为共享库,Windows基于CMake编译Caffe需要opencv共享库
判断OpenCV是否为共享库,Windows基于CMake编译Caffe需要opencv共享库 TLDR 只考虑windows下opencv预编译包的情况. 对于opencv2.4.x系列,cmake ...
- caffe搭建--caffe- win10 vs2015 编译(支持GPU)--注意在cmake的时候需要根据情况仔细修改配置
--http://blog.csdn.net/longji/article/details/60964998 注意: 在cmake的时候需要根据情况仔细修改配置,比如,如果gpu的能力不足3.0的话, ...
- 【神经网络与深度学习】【CUDA开发】【VS开发】Caffe+VS2013+CUDA7.5+cuDNN配置过程说明
[神经网络与深度学习][CUDA开发][VS开发]Caffe+VS2013+CUDA7.5+cuDNN配置过程说明 标签:[Qt开发] 说明:这个工具在Windows上的配置真的是让我纠结万分,大部分 ...
- 56 Marvin: 一个支持GPU加速、且不依赖其他库(除cuda和cudnn)的轻量化多维深度学习(deep learning)框架介绍
0 引言 Marvin是普林斯顿视觉实验室(PrincetonVision)于2015年提出的轻量化GPU加速的多维深度学习网络框架.该框架采用纯c/c++编写,除了cuda和cudnn以外,不依赖其 ...
- Caffe使用新版本CUDA和CuDNN
因为一些原因还是需要使用别人基于Caffe的代码,但是代码比较老,默认不支持高版本的cuda或者cudnn 怎么办呢?基本上就是把最新官方Caffe-BVLC的几个关键文件拿过来替换即可. 脚本如下: ...
随机推荐
- 【VS开发】 自己编写一个简单的ActiveX控件——详尽教程
最近开始学ActiveX控件编程,上手不太容易,上网想找相关教程也没合适的,最后还是在师哥的指导下完成了第一个简单控件的开发,现在把开发过程贴出来与大家分享一下~ (环境说明--平台:vs2005:语 ...
- python+selenium下载文件——Chrome
from selenium import webdriver import time options = webdriver.ChromeOptions() prefs = { 'profile.de ...
- ORA-01406:提取的列值被截断 ; SQL Server :将截断字符串或二进制数据
oracle 数据库可以正常连接,表数据也可以正常读取, 但在程序中相同的位置,有时会报错,有时不会报错,有的电脑会报错,有的不会 报错内容为 ORA-01406:提取的列值被截断 查了网上提供的一些 ...
- [CF750G] New Year and Binary Tree Paths
目录 简单的 组合的 题目链接 简单的 设从节点\(x\)开始不断往左儿子走h-1步,则编号和为\(x\sum_{i=0}^{h-1}2^i=x(2^h-1)\). 若倒数第\(i\)步走向的是右儿子 ...
- Python基础数据类型str字符串
3.3字符串str ' ' 0 切片选取 [x:y] 左闭右开区间 [x:y:z] 选取x到y之间 每隔z选取一次(选取x,x+z,....) z为正 索引位置:x在y的左边 z为负 索引位置:x在y ...
- NSIS打包软件使用
NSIS打包软件使用 最近做的一个调用远程桌面的小应用需要打个安装包,并且在安装的时候需要添加注册表,我之前使用的都是"Advanced Installer"来打包应用程序的,这个 ...
- 如何使用Resource资源文件
一.目的 为了能够在DisplayAttribute中重复使用同样的名称,将所有的显示字符串集中管理. 二.方法 1.DisplayAttribute本身支持直接使用资源文件. [Display(Re ...
- 使用了框架iframe的页面如何跳出框架
"window.location.href"."location.href"是本页面跳转. "parent.location.href" 是 ...
- Go基础学习
Go基础学习 go的基础语法 fmt.Println("hello world!") //go采用行分隔符 关键字 下面列举了 Go 代码中会使用到的 25 个关键字或保留字: b ...
- 10分钟,让你彻底明白Promise原理
什么是Promise?本代码用定外卖来举例子,让你明白. // 定外卖就是一个Promise,Promist的意思就是承诺// 我们定完外卖,饭不会立即到我们手中// 这时候我们和商家就要达成一个承诺 ...