2017乌鲁木齐网络赛 J题 Our Journey of Dalian Ends ( 最小费用最大流 )
题意 : 给出一副图,大连是起点,终点是西安,要求你求出从起点到终点且经过中转点上海的最小花费是多少?
分析 :
最短路是最小费用最大流的一个特例,所以有些包含中转限制或者经过点次数有限制的最短路问题都可以考虑使用最小费用最大流来建图解决。
首先对于每个点都只能经过一次这个限制,在网络流中是比较常见的一个限制,只要将所有的点由一拆二且两点间连容量为 1 且花费为 0 的边。
这题的建图很巧妙,是将中转点作为汇点,提示到了这里不如停下来想想如何建图?
然后抽象出一个超级源点,然后将起点和终点与超级源点连一条容量为 1 且 花费为 0 的边,最后将上海这个中转点作为超级汇点。
最后跑出的最小费用最大流就是答案,当然最大流应当是要等于 2 的,如果没有解则说明 MaxFlow < 2。
#include<bits/stdc++.h>
using namespace std;
;
const int INF = 0x3f3f3f3f;
];
map<string, int> mp;
int id;
struct Edge
{
int from,to,cap,flow,cost;
Edge(int u,int v,int ca,int f,int co):from(u),to(v),cap(ca),flow(f),cost(co){};
};
struct MCMF
{
int n,m,s,t;
vector<Edge> edges;
vector<int> G[maxn];
int inq[maxn];//是否在队列中
int d[maxn];//距离
int p[maxn];//上一条弧
int a[maxn];//可改进量
void init(int n)//初始化
{
this->n=n;
;i<=n;i++)
G[i].clear();
edges.clear();
}
void AddEdge(int from,int to,int cap,int cost)//加边
{
edges.push_back(Edge(,cost));
edges.push_back(Edge(to,,,-cost));
int m=edges.size();
G[);
G[to].push_back(m-);
}
bool SPFA(int s,int t,int &flow,int &cost)//寻找最小费用的增广路,使用引用同时修改原flow,cost
{
;i<n;i++)
d[i]=INF;
memset(inq,,sizeof(inq));
d[s]=;inq[s]=;p[s]=;a[s]=INF;
queue<int> Q;
Q.push(s);
while(!Q.empty())
{
int u=Q.front();
Q.pop();
inq[u]--;
;i<G[u].size();i++)
{
Edge& e=edges[G[u][i]];
if(e.cap>e.flow && d[e.to]>d[u]+e.cost)//满足可增广且可变短
{
d[e.to]=d[u]+e.cost;
p[e.to]=G[u][i];
a[e.to]=min(a[u],e.cap-e.flow);
if(!inq[e.to])
{
inq[e.to]++;
Q.push(e.to);
}
}
}
}
if(d[t]==INF) return false;//汇点不可达则退出
flow+=a[t];
cost+=d[t]*a[t];
int u=t;
while(u!=s)//更新正向边和反向边
{
edges[p[u]].flow+=a[t];
edges[p[u]^].flow-=a[t];
u=edges[p[u]].from;
}
return true;
}
int MincotMaxflow(int s,int t)
{
,cost=;
while(SPFA(s,t,flow,cost));
return cost;
}
}MM;
inline void init()
{
mp.clear();
mp[;///中转点上海
mp[;///起点大连
mp[;///终点西安
id = ;
}
int main(void)
{
int nCase;
cin>>nCase;
while(nCase--){
init();
int M;
cin>>M;
string From, To;
int Weight;
; i<=M; i++){
cin>>From>>To>>Weight;
if(!mp.count(From)) mp[From] = id++;
if(!mp.count(To)) mp[To] = id++;
arr[i].from = mp[From];
arr[i].to = mp[To];
arr[i].w = Weight;
}
;
MM.init(*n+);
MM.AddEdge(, , , );
MM.AddEdge(, , , );
; i<=n; i++)
MM.AddEdge(i, i+n, , );
; i<=M; i++){
MM.AddEdge(arr[i]., arr[i].w);
MM.AddEdge(arr[i].to+n, arr[i]., arr[i].w);
}
printf(, ));
}
;
}
2017乌鲁木齐网络赛 J题 Our Journey of Dalian Ends ( 最小费用最大流 )的更多相关文章
- 2017乌鲁木齐网络赛 j 题
题目连接 : https://nanti.jisuanke.com/t/A1256 Life is a journey, and the road we travel has twists and t ...
- Our Journey of Dalian Ends && Our Journey of Xian Ends 最小费用最大流
2017 ACM-ICPC 亚洲区(乌鲁木齐赛区)网络赛Our Journey of Dalian Ends 题意:要求先从大连到上海,再从上海打西安,中途会经过其他城市,每个城市只能去一次,出一次, ...
- Libre 6011 「网络流 24 题」运输问题 (网络流,最小费用最大流)
Libre 6011 「网络流 24 题」运输问题 (网络流,最小费用最大流) Description W 公司有m个仓库和n个零售商店.第i个仓库有\(a_i\)个单位的货物:第j个零售商店需要\( ...
- luogu 1327 数列排序 & 2017 ACM-ICPC 亚洲区(南宁赛区)网络赛 J题 循环节
luogu 1327 数列排序 题意 给定一个数列\(\{an\}\),这个数列满足\(ai≠aj(i≠j)\),现在要求你把这个数列从小到大排序,每次允许你交换其中任意一对数,请问最少需要几次交换? ...
- 2013 长沙网络赛J题
思路:这题对于其他能退出所有值的情况比较好像,唯一不能确定的是XXOXXOXXOXX这个形式的序列,其中XX表示未知,O表示已知. 我们令num[1]=0,那么num[4]=sum[3]-sum[2] ...
- 2013 ACM/ICPC 长沙网络赛J题
题意:一个数列,给出这个数列中的某些位置的数,给出所有相邻的三个数字的和,数列头和尾处给出相邻两个数字的和.有若干次询问,每次问某一位置的数字的最大值. 分析:设数列为a1-an.首先通过相邻三个数字 ...
- hihocoder 1236(2015北京网络赛 J题) 分块bitset乱搞题
题目大意: 每个人有五门课成绩,初始给定一部分学生的成绩,然后每次询问给出一个学生的成绩,希望知道在给定的一堆学生的成绩比这个学生每门都低或者相等的人数 因为强行要求在线查询,所以题目要求,每次当前给 ...
- 2017乌鲁木齐区域赛D题Fence Building-平面图的欧拉公式
这个题B站上面有这题很完整的分析和证明,你实在不懂,可以看看这个视频 https://www.bilibili.com/video/av19849697?share_medium=android&a ...
- Sum 南京网络赛J题
题意: 统计每个数的因子的对数,如果因子能被某个平方数整除,则不统计在内,每对因子有序 解析: 我们对某个数n进行质因子分解,如果某个质因子的指数大于2则 f(n) = 0, 例 N = X3 * M ...
随机推荐
- Java ——重写、多态、抽象类
本节重点思维导图 重写 子类覆盖父类同名的方法 final关键字:不可变的 public static final PAGE_SIZE = 18; final修饰的类不能做为父类被子类继承. 多态 多 ...
- kafka学习(七)
跨集群数据镜像 跨集群镜像的使用场景 1.区域集群和中心集群 2.冗余,发生紧急情况下使用第二个集群,保存相同的数据. 3.云迁移 多集群架构 跨集群中心通信的一些现实情况 1.高延迟 2.有 ...
- Java数据结构之双向链表
管理单向链表的缺点分析: 单向链表,查找的方向只能是一个方向,而双向链表可以向前或者向后查找. 单向链表不能自我删除,需要靠辅助节点 ,而双向链表,则可以自我删除,所以前面我们单链表删除时节点,总是找 ...
- .Net Core - 使用Supervisor进行托管部署
环境 CentOS 7 x64,详见 安装CentOS7虚拟机 .Net Core 2.1.801 详见 CentOS 7 下安装.NET Core SDK 2.1 ftp 详见 CentOS7 ...
- express 实现我猜你喜欢功能
工具:利用cookie-parser中间件; 原理: 每次访问某一具体的文章,就表明可能客户端对这类文章感兴趣, 将这类文章的标签添加到cookie里,字段是like; 然后退回到含有 我猜你喜欢模块 ...
- 【LGR-065】洛谷11月月赛 III Div.2
临近$CSP$...... 下午打了一发月赛,感觉很爽. 非常菜的我只做了前两题......然而听说前两题人均过...... 写法不优秀被卡到$#1067$...... T1:基础字符串练习题: 前缀 ...
- 03: django进阶篇
1.1 cookie 1.cookie简介 1. cookie实质就是客户端硬盘中存放的键值对,利用这个特性可以用来做用户验证 2. 比如:{“username”: “dachengzi”} #再次访 ...
- Python 入门之 Python三大器 之 装饰器
Python 入门之 Python三大器 之 装饰器 1.开放封闭原则: (1)代码扩展进行开放 任何一个程序,不可能在设计之初就已经想好了所有的功能并且未来不做任何更新和修改.所以我们必须允许代 ...
- Slim Span (最小生成树)
题意 求生成树的最长边与最短边的差值的最小值 题解 最小生成树保证每一条边最小,就只要枚举最小边开始,跑最小生成树,最后一个值便是最大值 在枚举最小边同时维护差值最小,不断更新最小值. C++代码 / ...
- ASP.NET CORE 2.2 MVC 学习
百度云链接:https://pan.baidu.com/s/1_iSy3wq4Jegr6j_AH9nobA 提取码:n152