题目链接

题意 : 给出一副图,大连是起点,终点是西安,要求你求出从起点到终点且经过中转点上海的最小花费是多少?

分析 :

最短路是最小费用最大流的一个特例,所以有些包含中转限制或者经过点次数有限制的最短路问题都可以考虑使用最小费用最大流来建图解决。

首先对于每个点都只能经过一次这个限制,在网络流中是比较常见的一个限制,只要将所有的点由一拆二且两点间连容量为 1 且花费为 0 的边。

这题的建图很巧妙,是将中转点作为汇点,提示到了这里不如停下来想想如何建图?

然后抽象出一个超级源点,然后将起点和终点与超级源点连一条容量为 1 且 花费为 0 的边,最后将上海这个中转点作为超级汇点。

最后跑出的最小费用最大流就是答案,当然最大流应当是要等于 2 的,如果没有解则说明 MaxFlow < 2。

#include<bits/stdc++.h>
using namespace std;
;
const int  INF = 0x3f3f3f3f;
];
map<string, int> mp;
int id;

struct Edge
{
    int from,to,cap,flow,cost;
    Edge(int u,int v,int ca,int f,int co):from(u),to(v),cap(ca),flow(f),cost(co){};
};

struct MCMF
{
    int n,m,s,t;
    vector<Edge> edges;
    vector<int> G[maxn];
    int inq[maxn];//是否在队列中
    int d[maxn];//距离
    int p[maxn];//上一条弧
    int a[maxn];//可改进量

    void init(int n)//初始化
    {
        this->n=n;
        ;i<=n;i++)
            G[i].clear();
        edges.clear();
    }

    void AddEdge(int from,int to,int cap,int cost)//加边
    {
        edges.push_back(Edge(,cost));
        edges.push_back(Edge(to,,,-cost));
        int m=edges.size();
        G[);
        G[to].push_back(m-);
    }

    bool SPFA(int s,int t,int &flow,int &cost)//寻找最小费用的增广路,使用引用同时修改原flow,cost
    {
        ;i<n;i++)
            d[i]=INF;
        memset(inq,,sizeof(inq));
        d[s]=;inq[s]=;p[s]=;a[s]=INF;
        queue<int> Q;
        Q.push(s);
        while(!Q.empty())
        {
            int u=Q.front();
            Q.pop();
            inq[u]--;
            ;i<G[u].size();i++)
            {
                Edge& e=edges[G[u][i]];
                if(e.cap>e.flow && d[e.to]>d[u]+e.cost)//满足可增广且可变短
                {
                    d[e.to]=d[u]+e.cost;
                    p[e.to]=G[u][i];
                    a[e.to]=min(a[u],e.cap-e.flow);
                    if(!inq[e.to])
                    {
                        inq[e.to]++;
                        Q.push(e.to);
                    }
                }
            }
        }
        if(d[t]==INF) return false;//汇点不可达则退出
        flow+=a[t];
        cost+=d[t]*a[t];
        int u=t;
        while(u!=s)//更新正向边和反向边
        {
            edges[p[u]].flow+=a[t];
            edges[p[u]^].flow-=a[t];
            u=edges[p[u]].from;
        }
        return true;
    }

    int MincotMaxflow(int s,int t)
    {
        ,cost=;
        while(SPFA(s,t,flow,cost));
        return cost;
    }
}MM;

inline void init()
{
    mp.clear();
    mp[;///中转点上海
    mp[;///起点大连
    mp[;///终点西安
    id = ;
}

int main(void)
{
    int nCase;
    cin>>nCase;
    while(nCase--){
        init();
        int M;
        cin>>M;
        string From, To;
        int Weight;
        ; i<=M; i++){
            cin>>From>>To>>Weight;
            if(!mp.count(From)) mp[From] = id++;
            if(!mp.count(To)) mp[To] = id++;
            arr[i].from = mp[From];
            arr[i].to = mp[To];
            arr[i].w = Weight;
        }

        ;
        MM.init(*n+);
        MM.AddEdge(, , , );
        MM.AddEdge(, , , );
        ; i<=n; i++)
            MM.AddEdge(i, i+n, , );
        ; i<=M; i++){
            MM.AddEdge(arr[i]., arr[i].w);
            MM.AddEdge(arr[i].to+n, arr[i]., arr[i].w);
        }

        printf(, ));
    }
    ;
}

2017乌鲁木齐网络赛 J题 Our Journey of Dalian Ends ( 最小费用最大流 )的更多相关文章

  1. 2017乌鲁木齐网络赛 j 题

    题目连接 : https://nanti.jisuanke.com/t/A1256 Life is a journey, and the road we travel has twists and t ...

  2. Our Journey of Dalian Ends && Our Journey of Xian Ends 最小费用最大流

    2017 ACM-ICPC 亚洲区(乌鲁木齐赛区)网络赛Our Journey of Dalian Ends 题意:要求先从大连到上海,再从上海打西安,中途会经过其他城市,每个城市只能去一次,出一次, ...

  3. Libre 6011 「网络流 24 题」运输问题 (网络流,最小费用最大流)

    Libre 6011 「网络流 24 题」运输问题 (网络流,最小费用最大流) Description W 公司有m个仓库和n个零售商店.第i个仓库有\(a_i\)个单位的货物:第j个零售商店需要\( ...

  4. luogu 1327 数列排序 & 2017 ACM-ICPC 亚洲区(南宁赛区)网络赛 J题 循环节

    luogu 1327 数列排序 题意 给定一个数列\(\{an\}\),这个数列满足\(ai≠aj(i≠j)\),现在要求你把这个数列从小到大排序,每次允许你交换其中任意一对数,请问最少需要几次交换? ...

  5. 2013 长沙网络赛J题

    思路:这题对于其他能退出所有值的情况比较好像,唯一不能确定的是XXOXXOXXOXX这个形式的序列,其中XX表示未知,O表示已知. 我们令num[1]=0,那么num[4]=sum[3]-sum[2] ...

  6. 2013 ACM/ICPC 长沙网络赛J题

    题意:一个数列,给出这个数列中的某些位置的数,给出所有相邻的三个数字的和,数列头和尾处给出相邻两个数字的和.有若干次询问,每次问某一位置的数字的最大值. 分析:设数列为a1-an.首先通过相邻三个数字 ...

  7. hihocoder 1236(2015北京网络赛 J题) 分块bitset乱搞题

    题目大意: 每个人有五门课成绩,初始给定一部分学生的成绩,然后每次询问给出一个学生的成绩,希望知道在给定的一堆学生的成绩比这个学生每门都低或者相等的人数 因为强行要求在线查询,所以题目要求,每次当前给 ...

  8. 2017乌鲁木齐区域赛D题Fence Building-平面图的欧拉公式

    这个题B站上面有这题很完整的分析和证明,你实在不懂,可以看看这个视频  https://www.bilibili.com/video/av19849697?share_medium=android&a ...

  9. Sum 南京网络赛J题

    题意: 统计每个数的因子的对数,如果因子能被某个平方数整除,则不统计在内,每对因子有序 解析: 我们对某个数n进行质因子分解,如果某个质因子的指数大于2则 f(n) = 0, 例 N = X3 * M ...

随机推荐

  1. HTML5——拖放 地理定位 视频 音频 新的input类型

    拖放 ————>   设置元素为可拖放 拖动什么 放到何处 进行放置 实例[来回拖放] 地理定位 使用地理定位 处理错误和拒绝 在地图中显示结果 基于脚本的交互式地图 给定位置的信息 用户移动时 ...

  2. 用WebService实现对数据库进行操作(添加+删除+修改)(转)

    转自:http://blog.csdn.net/beyondqd/article/details/6703169 表为User,字段有 编号: int id,用户名:string UserName,密 ...

  3. STL 函数适配器(function adapter)

    函数适配器(function adapter):通过不同函数适配器的绑定,组合和修饰能力,可以实现强大的功能,配合STL泛型算法完成复杂功能. 绑定(bind) template <class ...

  4. 在centos6.4下安装python3.5

    1.安装依赖包 ./configure --prefix=/usr/local/python3.5 --enable-shared make && make install yum g ...

  5. js中箭头函数 及 针对箭头函数this指向问题引出的单体模式

    ES6允许使用“箭头”(=>)定义函数 var f = a = > a //等同于 var f = function(a){ return a; } 如果箭头函数不需要参数或需要多个参数, ...

  6. 小白学Python——Matplotlib 学习(3) 函数图形

    import matplotlib.pyplot as plt import numpy as np x = np.linspace(-1,1,50) y = 2*x + 1 plt.figure() ...

  7. python 发送kafka

    python 发送kafka大体有三种方式 1 发送并忘记(不关注是否正常到达,不对返回结果做处理) 1 import pickle 2 import time 3 from kafka import ...

  8. 客户端通过url向后端传递参数

    在前端我们不仅可以通过get请求携带参数的方式向服务端传数据: https://127.0.0.1/index/?id=1&name=alex Django也允许通过,path路径的方式向se ...

  9. Django 调试models 输出的SQL语句 定位查看结果

    django 调试models变得更为简单了,不用像之前的版本, 手工去调用django query, 才能打印出之前的代码是执行的什么SQL语句. 1.3开始只需在settings.py里,配置如下 ...

  10. 手摸手教你如何在 Python 编码中做到小细节大优化

    手摸手教你如何在 Python 编码中做到小细节大优化 在列表里计数 """ 在列表里计数,使用 Python 原生函数计数要快很多,所以尽量使用原生函数来计算. &qu ...