链接:https://leetcode-cn.com/problems/longest-common-subsequence

给定两个字符串 text1 和 text2,返回这两个字符串的最长公共子序列。

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
例如,"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。两个字符串的「公共子序列」是这两个字符串所共同拥有的子序列。

若这两个字符串没有公共子序列,则返回 0。

示例 1:

输入:text1 = "abcde", text2 = "ace"
输出:3
解释:最长公共子序列是 "ace",它的长度为 3。
示例 2:

输入:text1 = "abc", text2 = "abc"
输出:3
解释:最长公共子序列是 "abc",它的长度为 3。
示例 3:

输入:text1 = "abc", text2 = "def"
输出:0
解释:两个字符串没有公共子序列,返回 0。

提示:

1 <= text1.length <= 1000
1 <= text2.length <= 1000
输入的字符串只含有小写英文字符。

这道题用动态规划的方法来解,我们开一个二维数组 dp[i][j] 来存储状态,表示text1的前i个字符与text2的前j个字符的最长公共子序列。那么它的值应当有如下情况。

如果text1的第i个字符与text2的第j个字符相同,那么dp[i][j] = dp[i-1][j-1] + 1

如果text1的第i个字符与text2的第j个字符不同,那么dp[i][j] = max(dp[i-1][j] , dp[i][j-1]). 因为已经知道第i个和第j个完全不同了,所以不用让它们都往前走了,只让text2走到j,或者只让text1走到i,就足够了。然后比较哪种结果最大,因为求的是最长公共子序列嘛,所以取最大值。

状态的转变就是这样,要注意的是,因为下标会取到dp[i-1][j-1],所以在循环时要从1开始,而不是0.

c++代码如下:

 class Solution {
public:
int longestCommonSubsequence(string text1, string text2) {
vector<vector<int>> dp(text1.length() + , vector<int>(text2.length() + ));
for(int i = ; i < text1.length() + ; i++){
for(int j = ; j < text2.length() + ; j++){
if(text1[i-] == text2[j-]) dp[i][j] = dp[i-][j-] + ;
else dp[i][j] = max(dp[i-][j], dp[i][j-]);
}
}
return dp.back().back();
}
};

LeetCode 1143 最长公共子序列的更多相关文章

  1. [LeetCode每日一题]1143. 最长公共子序列

    [LeetCode每日一题]1143. 最长公共子序列 问题 给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度.如果不存在 公共子序列 ,返回 0 . 一个字符串 ...

  2. 1. 线性DP 1143. 最长公共子序列

    最经典双串: 1143. 最长公共子序列 (LCS)  https://leetcode-cn.com/problems/longest-common-subsequence/submissions/ ...

  3. 【LeetCode】最长公共子序列

    [问题]给定两个字符串A和B,长度分别为m和n,要求找出它们最长的公共子串,并返回其长度.例如:A = "HelloWorld"B = "loop"则A与B的最 ...

  4. 从最长公共子序列问题理解动态规划算法(DP)

    一.动态规划(Dynamic Programming) 动态规划方法通常用于求解最优化问题.我们希望找到一个解使其取得最优值,而不是所有最优解,可能有多个解都达到最优值. 二.什么问题适合DP解法 如 ...

  5. 子序列 sub sequence问题,例:最长公共子序列,[LeetCode] Distinct Subsequences(求子序列个数)

    引言 子序列和子字符串或者连续子集的不同之处在于,子序列不需要是原序列上连续的值. 对于子序列的题目,大多数需要用到DP的思想,因此,状态转移是关键. 这里摘录两个常见子序列问题及其解法. 例题1, ...

  6. 【python】Leetcode每日一题-最长公共子序列

    [python]Leetcode每日一题-最长公共子序列 [题目描述] 给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度.如果不存在 公共子序列 ,返回 0 . ...

  7. Java实现 LeetCode 583 两个字符串的删除操作(求最长公共子序列问题)

    583. 两个字符串的删除操作 给定两个单词 word1 和 word2,找到使得 word1 和 word2 相同所需的最小步数,每步可以删除任意一个字符串中的一个字符. 示例: 输入: " ...

  8. 用python实现最长公共子序列算法(找到所有最长公共子串)

    软件安全的一个小实验,正好复习一下LCS的写法. 实现LCS的算法和算法导论上的方式基本一致,都是先建好两个表,一个存储在(i,j)处当前最长公共子序列长度,另一个存储在(i,j)处的回溯方向. 相对 ...

  9. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

随机推荐

  1. 日常linux命令

    绝对路径用什么符号表示?当前目录.上层目录用什么表示?主目录用什么表示? 切换目录用什么命令?   绝对路径: 如/etc/init.d                当前目录和上层目录: ./  . ...

  2. Java多线程学习——知识点积累

    开启多线程时,每一个线程都拥有自己的工作空间,每个工作空间都单独的和主存打交道. 并发的概念:多个线程同时操作同一个对象 当产生并发时,如果从工作空间写入数据到内存的线程时间片用完了,其他线程再从主存 ...

  3. 应用安全 - CMS - vBulletin漏洞汇总

    SSV-15384 Date: 2004.11 漏洞类别: SQL 注入 SSV-15476 Date: 2005.2 漏洞类别: RCE SSV-15482 Date: 2005.2 类型: RCE ...

  4. HTTP 常见相应状态码及含义

    1xx:信息 100 Continue 服务器仅接收到部分请求,但是一旦服务器并没有拒绝该请求,客户端应该继续发送其余的请求. 101 Switching Protocols 服务器转换协议:服务器将 ...

  5. Java 5种单例模式

    /*单例模式: 指某个类中只能存在一个对象实例,并且该类中只提供一个取得其对象实例的方法 优点:减少系统性能开销 应用场景:网站的计数器,任务管理器,回收站等*/   //单例模式1 -- 静态内部类 ...

  6. Python 入门之Python基础知识

    Python 入门之Python基础知识 1.变量 (1)变量就是把程序运行的中间结果临时存在内存中,以便后续代码使用 (2)变量的作用: 昵称,就是代指内存中某个地址中的内容 a = 123 变量名 ...

  7. P4290 [HAOI2008]玩具取名

    传送门 $dp$ 设 $f[i][j][k]$ 表示初始为 $k$ 时,能否得到 $[i,j]$ 这一段子串 设 $pd[i][j][k]$ 表示长度为二的字符串 $ij$ 能否由 $k$ 得到 然后 ...

  8. 标准库path源码解读

    先看标准库 作用:关于路径的一些实用操作 https://github.com/golang/go/blob/master/src/path/path.go 源码地址 func IsAbs func ...

  9. ArcGIS Server导出shp文件

    需求: 在项目中客户提出需要在Web端能够定义条件将后台的数据导出shp文件,并下载. 实现: 基于ArcGIS开发导出矢量数据的服务,用户输入导出数据类型.过滤条件.导出范围等条件,服务能够快速将相 ...

  10. 同步锁 synchronized

    package ba; public class Tongbu implements Runnable{ int i=100; public void run(){ while(true){ sell ...