LeetCode 1143 最长公共子序列
链接:https://leetcode-cn.com/problems/longest-common-subsequence
给定两个字符串 text1 和 text2,返回这两个字符串的最长公共子序列。
一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
例如,"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。两个字符串的「公共子序列」是这两个字符串所共同拥有的子序列。
若这两个字符串没有公共子序列,则返回 0。
示例 1:
输入:text1 = "abcde", text2 = "ace"
输出:3
解释:最长公共子序列是 "ace",它的长度为 3。
示例 2:
输入:text1 = "abc", text2 = "abc"
输出:3
解释:最长公共子序列是 "abc",它的长度为 3。
示例 3:
输入:text1 = "abc", text2 = "def"
输出:0
解释:两个字符串没有公共子序列,返回 0。
提示:
1 <= text1.length <= 1000
1 <= text2.length <= 1000
输入的字符串只含有小写英文字符。
这道题用动态规划的方法来解,我们开一个二维数组 dp[i][j] 来存储状态,表示text1的前i个字符与text2的前j个字符的最长公共子序列。那么它的值应当有如下情况。
如果text1的第i个字符与text2的第j个字符相同,那么dp[i][j] = dp[i-1][j-1] + 1
如果text1的第i个字符与text2的第j个字符不同,那么dp[i][j] = max(dp[i-1][j] , dp[i][j-1]). 因为已经知道第i个和第j个完全不同了,所以不用让它们都往前走了,只让text2走到j,或者只让text1走到i,就足够了。然后比较哪种结果最大,因为求的是最长公共子序列嘛,所以取最大值。
状态的转变就是这样,要注意的是,因为下标会取到dp[i-1][j-1],所以在循环时要从1开始,而不是0.
c++代码如下:
class Solution {
public:
int longestCommonSubsequence(string text1, string text2) {
vector<vector<int>> dp(text1.length() + , vector<int>(text2.length() + ));
for(int i = ; i < text1.length() + ; i++){
for(int j = ; j < text2.length() + ; j++){
if(text1[i-] == text2[j-]) dp[i][j] = dp[i-][j-] + ;
else dp[i][j] = max(dp[i-][j], dp[i][j-]);
}
}
return dp.back().back();
}
};
LeetCode 1143 最长公共子序列的更多相关文章
- [LeetCode每日一题]1143. 最长公共子序列
[LeetCode每日一题]1143. 最长公共子序列 问题 给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度.如果不存在 公共子序列 ,返回 0 . 一个字符串 ...
- 1. 线性DP 1143. 最长公共子序列
最经典双串: 1143. 最长公共子序列 (LCS) https://leetcode-cn.com/problems/longest-common-subsequence/submissions/ ...
- 【LeetCode】最长公共子序列
[问题]给定两个字符串A和B,长度分别为m和n,要求找出它们最长的公共子串,并返回其长度.例如:A = "HelloWorld"B = "loop"则A与B的最 ...
- 从最长公共子序列问题理解动态规划算法(DP)
一.动态规划(Dynamic Programming) 动态规划方法通常用于求解最优化问题.我们希望找到一个解使其取得最优值,而不是所有最优解,可能有多个解都达到最优值. 二.什么问题适合DP解法 如 ...
- 子序列 sub sequence问题,例:最长公共子序列,[LeetCode] Distinct Subsequences(求子序列个数)
引言 子序列和子字符串或者连续子集的不同之处在于,子序列不需要是原序列上连续的值. 对于子序列的题目,大多数需要用到DP的思想,因此,状态转移是关键. 这里摘录两个常见子序列问题及其解法. 例题1, ...
- 【python】Leetcode每日一题-最长公共子序列
[python]Leetcode每日一题-最长公共子序列 [题目描述] 给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度.如果不存在 公共子序列 ,返回 0 . ...
- Java实现 LeetCode 583 两个字符串的删除操作(求最长公共子序列问题)
583. 两个字符串的删除操作 给定两个单词 word1 和 word2,找到使得 word1 和 word2 相同所需的最小步数,每步可以删除任意一个字符串中的一个字符. 示例: 输入: " ...
- 用python实现最长公共子序列算法(找到所有最长公共子串)
软件安全的一个小实验,正好复习一下LCS的写法. 实现LCS的算法和算法导论上的方式基本一致,都是先建好两个表,一个存储在(i,j)处当前最长公共子序列长度,另一个存储在(i,j)处的回溯方向. 相对 ...
- 动态规划之最长公共子序列(LCS)
转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...
随机推荐
- 动画演示 Delphi 2007 IDE 功能[2] - 定义变量
https://my.oschina.net/hermer/blog/319152 动画剧本: 第一个变量: 输入: var; 然后执行 Ctrl+J ... 回车 第二个变量: 执行 Ctrl+J; ...
- C# 文件打开对话框 图片fitter
"All Image Files|*.bmp;*.ico;*.gif;*.jpeg;*.jpg;*.png;*.tif;*.tiff|""Windows Bitmap(* ...
- yield(),sleep()以及wait()的区别
往往混淆了这三个函数的使用. 从操作系统的角度讲,os会维护一个ready queue(就绪的线程队列).并且在某一时刻cpu只为ready queue中位于队列头部的线程服务. 但是当前正在被服务的 ...
- 【ABAP系列】SAP ABAP 开发中的SMARTFORMS 参数
公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[ABAP系列]SAP ABAP 开发中的SMA ...
- 操作系统(3)实验相关原理——bootloader启动uCore
x86启动顺序 CS+EIP决定启动地址. CS部分后面又4个0,相当于是左移了4位.总之就是要让CS左移4位之后加上EIP来得到要跳转的地址. 0x7c00地方开始的512字节的内容就是bootlo ...
- iptables规则
iptables命令是Linux上常用的防火墙软件,是netfilter项目的一部分 iptables文件设置路径:命令:vim /etc/sysconfig/iptables-config 0x02 ...
- 【Qt开发】事件循环与线程 一
事件循环与线程 一 初次读到这篇文章,译者感觉如沐春风,深刻体会到原文作者是花了很大功夫来写这篇文章的,文章深入浅出,相信仔细读完原文或下面译文的读者一定会有收获. 由于原文很长,原文作者的行文思路是 ...
- 【QT开发】QT在windows下的exe应用程序如何在别人的电脑上直接运行
当你利用QT编译了一个可执行程序,需要将这个可执行程序拷贝到别人的电脑上运行,这个时候除了这个可执行程序外,还需要支持的库才可用运行.一般来说通过下面的方法可以实现. 首先,需要看你用的是什 ...
- 20191127 Spring Boot官方文档学习(4.18-4.24)
4.18.JTA的分布式事务 通过使用Atomikos或Bitronix嵌入式事务管理器,Spring Boot支持跨多个XA资源的分布式JTA事务.部署到合适的Java EE应用程序服务器时,还支持 ...
- 使用itchat获取微信好友的男女比例
# 使用itchat获取微信好友的男女比例 import itchat itchat.auto_login(hotReload=True) friends = itchat.get_friends(u ...