1、pandas数据的读取

pandas需要先读取表格类型的数据,然后进行分析

数据说明 说明 pandas读取方法
csv、tsv、txt 用逗号分割、tab分割的纯文本文件 pd.read_csv
excel 微软xls或者xlsx文件 pd.read_excel
mysql 关系向数据库表 pd.read_sql
#本代码示例:

import pandas as pd  #导入包

#1读取csv,使用默认的标题行、逗号分割
fpath = “要打开文件的路径”
ratings = pd.read_csv(fpath) #使用pd.read_csv读取数据
ratings.head() #查看前几行(默认5行)
ratings.shape #查看数据的形状,返回(行数、列数)
ratings.columns # 查看列名列表
ratings.index #查看索引列
ratings.dtypes #查看每一列的数据类型 #1.2读取txt文件,自己制定分隔符、列名
fpath = “文件的路径”
pvuv = pd.read_csv(
fpath,
sep = “\t”, #l列的分隔符
header = None,
names = ['pdate','pv','uv']
)
print(pvuv) #读取excel文件
fpath = “文件的路径”
pvuv = pd.read_excel(fpath)
print(pvuv) #读取Mysql数据库
import pmysql
conn = pmysql.connect(
host = '127.0.0.1',
user = 'root',
password = '',
database = 'test',
charest = 'utf8'
)
mysql_page = pd.read_sql("select * from 表名",con=conn)
print(mysql_page)

2、pandas数据结构(DataFrame   &   Series)

DataFrame:二维数据,整个表格,多行多列

df.columns 查询列

df.index  查询行

Series:一维数据,一行或者一列

#1、 Series
#2、DataFrame
#3、从DAtaFrame中查询出Series import pandas as pd
import numpy as np #series是一种类似于一维数组的对象,它由一组数据(不同数据类型)以及一组与之相关的数#据标签(即索引)组成。 #1.1仅有数据列表即可产生最简单的series
s1 = pd.Series([1,'a',5.2,6])
# print(s1) #左侧为索引,右侧为数据
print(s1.index) #获取索引 结果:RangeIndex(start=0, stop=4, step=1)
print(s1.values) #获取数据 结果:[1 'a' 5.2 6] #1.2 创建一个具有标签索引的Series
s2 = pd.Series([1,'a',5.2,6],index = ['d','b','a','c'])
print(s2)
print(s2.index) #Index(['d', 'b', 'a', 'c'], dtype='object') #1.3 使用python字典创建Series
sdata = {'ohio':3500,'Texas':72000,'Oregs':16000,'Ggrqg':5000}
s3 = pd.Series(sdata)
print(s3) #1.4 根据标签索引查询数据(类似python的字典dict)
print(s2['a'])#5.2
print(type(s2['a']))#<class 'float'>
print(s2[['b','a']]) #2 DataFrame
# DataFrame是一个表格型的数据结构
# 每一列可以是不同的值类型(数值、字符串、布尔值)
# 既有行索引index,也有列索引columns
# 可以被看由Series组成的字典 #2.1根据多个字典序列创建dataframe
data = {
'state':['ofjg','sdfg','werw','wrgwer','rgwg'],
'year':[2000,3000,5000,6000,9000],
'pop':[1.5,1.7,1.6,5.3,3.5]
}
df = pd.DataFrame(data)
print(df) #3.从DataFrame中查询Series
# 如果只查询一列,返回的是pd.Series
# 如果查询多行、多列,返回的是pd.DataFrame # 3.1 查询一列 结果是一个pd.Series
print(df['year'])
print(type(df['year']))#<class 'pandas.core.series.Series'> # 3.2 查询多列,结果是一个pd.DataFrame print(df[['year','pop']])
print(type(df[['year','pop']]))#<class 'pandas.core.frame.DataFrame'> # 3.3 查询一行,结果是一个pd.Series
print(df.loc[1])
print(type(df.loc[1]))#<class 'pandas.core.series.Series'> # 3.4 查询多行,结果是一个pd.DataFrame
print(df.loc[1:3])
print(type(df.loc[1:3]))#<class 'pandas.core.frame.DataFrame'>

pandas数据读取(DataFrame & Series)的更多相关文章

  1. pandas数据排序(series排序 & DataFrame排序)

    # pandas数据排序 # series的排序: # Series.sort_values(ascending = True,inplace = False) # 参数说明: # ascending ...

  2. Pandas 数据读取

    1.读取table # 读取普通分隔数据:read_table # 可以读取txt,csv import os os.chdir('F:/') #首先设置一下读取的路径 data1 = pd.read ...

  3. 『Pandas』数据读取&DataFrame切片

    读取文件 numpy.loadtxt() import numpy as np dataset_filename = "affinity_dataset.txt" X = np.l ...

  4. pandas数据读取

    02. Pandas读取数据 本代码演示: pandas读取纯文本文件 读取csv文件 读取txt文件 pandas读取xlsx格式excel文件 pandas读取mysql数据表 1.读取纯文本文件 ...

  5. Python数据分析之pandas基本数据结构:Series、DataFrame

    1引言 本文总结Pandas中两种常用的数据类型: (1)Series是一种一维的带标签数组对象. (2)DataFrame,二维,Series容器 2 Series数组 2.1 Series数组构成 ...

  6. 数据分析——Pandas的用法(Series,DataFrame)

    我们先要了解,pandas是基于Numpy构建的,pandas中很多的用法和numpy一致.pandas中又有series和DataFrame,Series是DataFrame的基础. pandas的 ...

  7. 吴裕雄--天生自然python学习笔记:pandas模块读取 Data Frame 数据

    读取行数据 读取一个列数据的语法为: 例如,读取所有学生自然科目的成绩 : import pandas as pd datas = [[65,92,78,83,70], [90,72,76,93,56 ...

  8. Spark:读取mysql数据作为DataFrame

    在日常工作中,有时候需要读取mysql的数据作为DataFrame数据源进行后期的Spark处理,Spark自带了一些方法供我们使用,读取mysql我们可以直接使用表的结构信息,而不需要自己再去定义每 ...

  9. pandas 从txt读取DataFrame&DataFrame格式化保存到txt

    前提 首先保证你txt里的文本内容是有规律可循的(例如,列与列之间通过“\t”.“,”等指定的可识别分隔符分隔): 例如我需要读取的数据,(\t)分隔: (此文件内容是直接以DataFrame格式化写 ...

随机推荐

  1. CodeForces - 474D (dp)

    题目:https://vjudge.net/contest/326867#problem/B 题意:有很多个蛋糕,现在你有两种吃蛋糕的吃法,一次吃一个,定为A,一次吃k个定为B,然后问你吃m个蛋糕有多 ...

  2. [CSP-S模拟测试]:f(Trie树+二分答案+meet in middle+two pointers)

    题目传送门(内部题67) 输入格式 第一行,三个整数$n$.$k$.$p$.第二行,$n$个自然数,表示$\{a_i\}$. 输出格式 输出一行,两个自然数,表示$f(res)$.$res$. 样例 ...

  3. [CSP-S模拟测试]:寿司(暴力)

    题目描述 小$c$是一名$oier$.最近,他发现他的数据结构好像学傻了.因为他在刷题时碰到了一道傻逼数据结构题,强行使用了平衡树来解决,卡着时间$AC$.为此,他被狠狠地嘲讽了一番.于是,小$c$找 ...

  4. xml基础之二(XML结构【2】)DTD文档模版

    xml基础之二(XML结构[2])DTD文档模版 xml 模板 文档结构  我们知道XML主要用于数据的存储和传输,所以无论是自定义还是外部引用DTD模板文档,都是为了突出数据的存储规范.DTD(文档 ...

  5. 架构-层-BLL:BLL

    ylbtech-架构-层-BLL:BLL 业务逻辑层(Business Logic Layer)无疑是系统架构中体现核心价值的部分.它的关注点主要集中在业务规则的制定.业务流程的实现等与业务需求有关的 ...

  6. 阶段1 语言基础+高级_1-3-Java语言高级_06-File类与IO流_09 序列化流_1_序列化和反序列化的概述

  7. 测开之路一百零八:bootstrap表格

    引入bootstrap和jquery 普通表格 html自带的边框线 bootstrap表格属性 bootstrap表格 边框线 鼠标经过变色 压缩表格,减小密度 自适应屏幕 隔行突出(变色) 表格里 ...

  8. oracle 11g 数据库恢复技术 ---03 补充日志

    三 补充日志(supplemental logging) 补充日志是对重做记录中变更矢量的补充信息,增加了变更矢量记载的记录量.Oracle某些功能要求启用补充日志才能正常或更好的工作,比如logmi ...

  9. 转:高效实用的.NET开源项目

    本文转自:http://www.cnblogs.com/pengze0902/p/7669631.html 似乎...很久很久没有写博客了,一直都想写两篇,但是却没有时间写.感觉最近有很多事情需要处理 ...

  10. SoapUI常用的参数化方法

    本篇文章来讲一下SoapUI在使用中常用的参数化方法字段参数化和使用DataSource调用Excel中的 数据给接口参数化,其中DataSource功能SoapUI开源版没有,大家可以使用破解版, ...