题面

传送门

题解

看出这是个闵可夫斯基和了然而我当初因为见到这词汇是在\(shadowice\)巨巨的\(Ynoi\)题解里所以压根没敢学……

首先您需要知道这个

首先如果有一个向量\(w\)使得\(w+b=a\),也就是使\(A,B\)的凸包有交,有\(w=a-b\),那么我们把\(B\)的横坐标和纵坐标全部取反之后,\(w\)就必定在\(A\)和\(-B\)的闵可夫斯基和里

那么只要对\(A,-B\)求一个闵可夫斯基和的凸包就行了,然后判一下输入的向量是否在这个凸包里就行了

//minamoto
#include<bits/stdc++.h>
#define R register
#define inf 0x3f3f3f3f
#define ll long long
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
char sr[1<<21];int K=-1;
inline void Ot(){fwrite(sr,1,K+1,stdout),K=-1;}
const int N=2e5+5;
struct node{
int x,y;
node(){}
node(R int xx,R int yy):x(xx),y(yy){}
inline node operator +(const node &b)const{return node(x+b.x,y+b.y);}
inline node operator -(const node &b)const{return node(x-b.x,y-b.y);}
inline ll operator *(const node &b)const{return 1ll*x*b.y-1ll*y*b.x;}
inline bool operator <(const node &b)const{return x<b.x;}
inline ll norm(){return 1ll*x*x+1ll*y*y;}
}A[N],B[N],C[N],st[N],P;
int ta,tb,tc,n,m,k,top,dd,q,x,y;ll res;
inline bool cmp(const node &a,const node &b){
ll k=(a-P)*(b-P);
return k?(k>0?1:0):(a-P).norm()<(b-P).norm();
}
void Graham(node *A,int &ta){
P=node(inf,inf),k=0;
fp(i,1,ta)if(A[i].x<P.x||A[i].x==P.x&&A[i].y<P.y)P=A[i],k=i;
swap(A[1],A[k]),sort(A+2,A+1+ta,cmp);
st[0]=A[1],st[top=1]=A[2];
fp(i,3,ta){
while(top&&(A[i]-st[top-1])*(st[top]-st[top-1])>=0)--top;
st[++top]=A[i];
}
fp(i,0,top)A[i]=A[i+top+1]=st[i];
ta=top;
}
void merge(){
C[tc=1]=A[0]+B[0];
R int i=0,j=0;
while(i<=ta||j<=tb){
node p1=(A[i]+B[j+1])-C[tc],p2=(A[i+1]+B[j])-C[tc];
p1*p2>=0?(C[++tc]=A[i]+B[j+1],++j):(C[++tc]=A[i+1]+B[j],++i);
}
// for(;i<=ta;++i)C[++tc]=A[i]+B[j];
// for(;j<=tb;++j)C[++tc]=A[i]+B[j];
Graham(C,tc);
ta=0,tb=0,dd=0;
while(C[dd+1].x>C[dd].x)++dd;
fp(i,0,dd)A[++ta]=C[i];
while(C[dd+1].x>=C[dd].x)++dd;
++tc;while(C[tc-1].x==C[tc].x)--tc;
fd(i,tc,dd)B[++tb]=C[i],B[tb].y=-B[tb].y;
}
bool in(node *A,int tot,const node &P){
if(P.x<A[1].x||P.x>A[tot].x)return false;
int k=lower_bound(A+1,A+tot+1,P)-A;
if(A[k].x==P.x)return P.y>=A[k].y;
return (A[k]-P)*(A[k-1]-P)<=0;
}
inline bool ck(const R int &x,const R int &y){return in(A,ta,node(x,y))&&in(B,tb,node(x,-y));}
int main(){
// freopen("testdata.in","r",stdin);
// freopen("testdata.out","w",stdout);
n=read(),m=read(),q=read(),ta=n,tb=m;
fp(i,1,n)A[i].x=read(),A[i].y=read();
fp(i,1,m)B[i].x=-read(),B[i].y=-read();
Graham(A,ta),Graham(B,tb);
merge();
while(q--)x=read(),y=read(),sr[++K]=ck(x,y)?'1':'0',sr[++K]='\n';
return Ot(),0;
}

洛谷P4557 [JSOI2018]战争(闵可夫斯基和+凸包)的更多相关文章

  1. 题解-洛谷P4724 【模板】三维凸包

    洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积 ...

  2. 洛谷P4559 [JSOI2018]列队 【70分二分 + 主席树】

    题目链接 洛谷P4559 题解 只会做\(70\)分的\(O(nlog^2n)\) 如果本来就在区间内的人是不用动的,区间右边的人往区间最右的那些空位跑,区间左边的人往区间最左的那些空位跑 找到这些空 ...

  3. P4557 [JSOI2018]战争

    首先可以题目描述的两个点集是两个凸包,分别设为A和B. 考虑一个向量w不合法的条件. 即存在b+w=a,其中a属于A,b属于B. 也就是a-b=w. 即对b取反后和a的闵可夫斯基和. 求出闵可夫斯基和 ...

  4. BZOJ5317:[JSOI2018]战争(闵可夫斯基和)

    令 \(a\in A,b\in B\) 则移动向量 \(\omega\) 使得存在 \(b+\omega=a\) 那么 \(\omega\) 需要满足 \(\omega=a−b\) 黑科技:闵可夫斯基 ...

  5. 洛谷P4724 【模板】三维凸包

    题面 传送门 题解 先理一下关于立体几何的基本芝士好了--顺便全都是从\(xzy\)巨巨的博客上抄来的 加减 三维向量加减和二维向量一样 模长 \(|a|=\sqrt{x^2+y^2+z^2}\) 点 ...

  6. 洛谷P4518 [JSOI2018]绝地反击(计算几何+二分图+退流)

    题面 传送门 题解 调了咱一个上午-- 首先考虑二分答案,那么每个点能够到达的范围是一个圆,这个圆与目标圆的交就是可行的区间,这个区间可以用极角来表示 首先,如果我们知道这个正\(n\)边形的转角,也 ...

  7. 洛谷P4517 [JSOI2018]防御网络(dp)

    题面 传送门 题解 翻译一下题意就是每次选出一些点,要用最少的边把这些点连起来,求期望边数 我也不知道为什么反正总之就是暴力枚举太麻烦了所以我们考虑贡献 如果一条边是割边,那么它会在图里当且仅当两边的 ...

  8. 洛谷P4559 [JSOI2018]列队(主席树)

    题面 传送门 题解 首先考虑一个贪心,我们把所有的人按\(a_i\)排个序,那么排序后的第一个人到\(k\),第二个人到\(k+1\),...,第\(i\)个人到\(k+i-1\),易证这样一定是最优 ...

  9. 洛谷 P4516 [JSOI2018]潜入行动

    题面传送门 一眼树形 \(dp\) 本题有 \(2\) 大难点. 难点之一是状态的设计,这里需要四维状态,\(dp[i][j][0/1][0/1]\) 表示在以 \(i\) 为根的子树内放了 \(j\ ...

随机推荐

  1. js操作indexedDB增删改查示例

    js操作indexedDB增删改查示例 if ('indexedDB' in window) { // 如果数据库不存在则创建,如果存在但是version更大,会自动升级不会复制原来的版本 var r ...

  2. hbase集群配置

    说明 安装 配置 启动 网页效果 一点废话 本文介绍hbase集群配置 说明 hbase想正确配置成功的前提是,你必须知道hadoop集群和zookeeper集群是如何配置的 安装 下载地址 http ...

  3. Dev TreeList基本用法

    public partial class treelist_shijian : DevExpress.XtraEditors.XtraForm      {          public treel ...

  4. BGP基本配置的方法

    边界网关协议(BGP)是运行于 TCP 上的一种自治系统的路由协议. BGP 是唯一一个用来处理像因特网大小的网络的协议,也是唯一能够妥善处理好不相关路由域间的多路连接的协议. as100 as200 ...

  5. django -- url 的 name 属性

    在html的form中使用给url定义的name值,可以在修改url时不用在修改form的src. urls.py from django.conf.urls import url from myte ...

  6. MyEclipse jQuery智能 提示

    jQuery智能 MyEclipse Spket IDE 1.6.23 http://www.spket.com/download.html Plugin 1.6.23 5.62 MB Minimum ...

  7. shell编程之sed编辑器&gawk程序

    原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://twentyfour.blog.51cto.com/945260/560372 s ...

  8. OSCache-JSP页面缓存(1)

    一.OSCache提供的缓存标签 这是OSCache提供的标签库中最重要的一个标签,包括在标签中的内容将应用缓存机制进行处理,处理的方式将取决于编程者对cache标签属性的设置. 第一次请求到达时,标 ...

  9. Dubbo简单介绍及其和zookeeper的关系

    何为Dubbo ​ Dubbox 是一个分布式服务框架,其前身是阿里巴巴开源项目Dubbo ,被国内电商及互联网项目中使用,后期阿里巴巴停止了该项目的维护,当当网便在Dubbo基础上进行优化,并继续维 ...

  10. day58-activiti 13-搭建web项目环境

    Eclipse的项目的build目录不可被删除,删除了也会被自动创建. 到项目的输出路径才看得到编译好的Java类.Eclipse的视图下是看不见的,因为类路径下的这个目录build不想让你操作,它给 ...