题目链接

题解

看到异或和最大就应该想到01 trie树

我们记\(S_i\)为前i项的异或和

那么我们的目的是最大化\(S_n\)$x$\(S_{j-1}\) \((l <= j <= r)\) (注意是\(j-1\), 所以l和r都要减1)

\(S_n\)^\(x\)已经固定, 那么我们可以把\(S_j\)放入trie树搞

那么怎么处理区间呢?

类似主席树

记录一下\([1-i]\)每个节点被多少个数经过

那么两棵trie树相减,就得到了 \([l-r]\)这段区间的信息

然后就是经典的模型了

Code

#include<bits/stdc++.h>
const int N = 600010, M = 25;
#define LL long long
#define RG register int ch[N*30][2], sum[N*30], root[N], cnt, tot, ans; using namespace std; inline int gi() {
RG int x = 0; RG char c = getchar(); bool f = 0;
while (c != '-' && (c < '0' || c > '9')) c = getchar();
if (c == '-') c = getchar(), f = 1;
while (c >= '0' && c <= '9') x = x*10+c-'0', c = getchar();
return f ? -x : x;
} void insert(int &now, int x, int dep) {
sum[++cnt] = sum[now]+1;
ch[cnt][0] = ch[now][0]; ch[cnt][1] = ch[now][1];
now = cnt;
if (dep < 0) return ;
insert(ch[now][(x >> dep) & 1], x, dep-1);
return ;
} void query(int rt1, int rt2, int x, int dep) {
if (dep < 0) return ;
int k = (x >> dep)&1;
if (sum[ch[rt2][k^1]]-sum[ch[rt1][k^1]] > 0) {
ans |= (1 << dep);
query(ch[rt1][k^1], ch[rt2][k^1], x, dep-1);
}
else query(ch[rt1][k], ch[rt2][k], x, dep-1);
return ;
} int main() {
//freopen(".in", "r", stdin);
//freopen(".out", "w", stdout);
int n = gi(), m = gi();
for (int i = 1; i <= n; i++) {
int x = gi();
tot ^= x; root[i] = root[i-1];
insert(root[i], tot, M-1);
}
for (int i = 1; i <= m; i++) {
char c = getchar();
while (c != 'A' && c != 'Q') c = getchar();
if (c == 'A') {
int x = gi();
tot ^= x;
root[n+1] = root[n];
insert(root[++n], tot, M-1);
}
else {
int l = gi()-1, r = gi()-1, x = gi();
ans = 0;
query(root[l-1], root[r], tot^x, M-1);
if (!l) ans = max(ans, tot^x);
printf("%d\n", ans);
}
}
return 0;
}

bzoj3261: 最大异或和 (可持久化trie树)的更多相关文章

  1. BZOJ3261: 最大异或和(可持久化trie树)

    题意 题目链接 Sol 设\(sum[i]\)表示\(1 - i\)的异或和 首先把每个询问的\(x \oplus sum[n]\)就变成了询问前缀最大值 可持久化Trie树维护前缀xor,建树的时候 ...

  2. 【bzoj3261】最大异或和 可持久化Trie树

    题目描述 给定一个非负整数序列 {a},初始长度为 N.       有M个操作,有以下两种操作类型:1.A x:添加操作,表示在序列末尾添加一个数 x,序列的长度 N+1.2.Q l r x:询问操 ...

  3. [十二省联考2019]异或粽子——可持久化trie树+堆

    题目链接: [十二省联考2019]异或粽子 求前$k$大异或区间,可以发现$k$比较小,我们考虑找出每个区间. 为了快速得到一个区间的异或和,将原序列做前缀异或和. 对于每个点作为右端点时,我们维护出 ...

  4. 【bzoj3689】异或之 可持久化Trie树+堆

    题目描述 给定n个非负整数A[1], A[2], ……, A[n].对于每对(i, j)满足1 <= i < j <= n,得到一个新的数A[i] xor A[j],这样共有n*(n ...

  5. BZOJ 3261 最大异或和 可持久化Trie树

    题目大意:给定一个序列,提供下列操作: 1.在数组结尾插入一个数 2.给定l,r,x,求一个l<=p<=r,使x^a[p]^a[p+1]^...^a[n]最大 首先我们能够维护前缀和 然后 ...

  6. 洛谷P4592 [TJOI2018]异或 【可持久化trie树】

    题目链接 BZOJ4592 题解 可持久化trie树裸题 写完就A了 #include<algorithm> #include<iostream> #include<cs ...

  7. bzoj3261: 最大异或和 可持久化trie

    题意:给定一个非负整数序列{a},初始长度为N. 有M个操作,有以下两种操作类型: 1.Ax:添加操作,表示在序列末尾添加一个数x,序列的长度N+1. 2.Qlrx:询问操作,你需要找到一个位置p,满 ...

  8. [BZOJ4103][Thu Summer Camp 2015]异或运算 可持久化Trie树

    4103: [Thu Summer Camp 2015]异或运算 Time Limit: 20 Sec  Memory Limit: 512 MB Description 给定长度为n的数列X={x1 ...

  9. 【bzoj4103】[Thu Summer Camp 2015]异或运算 可持久化trie树

    Description 给定长度为n的数列X={x1,x2,...,xn}和长度为m的数列Y={y1,y2,...,ym},令矩阵A中第i行第j列的值Aij=xi xor yj,每次询问给定矩形区域i ...

  10. 【bzoj3261】【最大异或和】可持久化trie树+贪心

    [pixiv] https://www.pixiv.net/member_illust.php?mode=medium&illust_id=61705397 Description 给定一个非 ...

随机推荐

  1. 微信内置浏览器中的cookie很诡异呀

    微信内置浏览器中的cookie很诡异呀 这是设置和删除COOKIE的代码 function set_cookie($var ,$value = '' ,$expire = 0){ $path = '/ ...

  2. Java中迭代Map的方法

    Map<String, String> mapServlet = new HashMap<String, String>(); System.out.println(" ...

  3. wamp安装两个,数据库丢了,怎么办

    wampserver3.*下载了好几天一直没有安装,今天发现必须安装,已升级自己的php版本,不过也饿可以自己手动配置PHP版本,既然有安装包就算了吧,当安装完后,发现忘记备份自己的数据库了,幸好之前 ...

  4. 基于任务的异步编程模式,Task-based Asynchronous Pattern

    术语: APM           异步编程模型,Asynchronous Programming Model,其中异步操作由一对 Begin/End 方法(如 FileStream.BeginRea ...

  5. System.Web.UI.Page事件执行顺序

    #region OnPreInit 第一步(显式重写,文章下面有隐式重写) protected override void OnPreInit(EventArgs e) { //检查 IsPostBa ...

  6. (11)Web程序保存状态的几种方式,Application,Session,Cookie,ViewState

    WEb程序保存状态的方式有这样几种: 1.Application:保存在Application中的数据是全局有效的:Application里面存放的应该是访问多修      改较少并且是全局至少大部分 ...

  7. 国外物联网平台(5):Exosite Murano

    国外物联网平台(5)——Exosite Murano 马智 定位 Murano是一个基于云的IoT软件平台,提供安全.可扩展的基础设施,支持端到端的生态系统,帮助客户安全.可扩展地开发.部署和管理应用 ...

  8. C#静态类 静态方法与非静态方法比较

    静态类 在类(class)上加入static修饰,表示该类无法被实例化,并将该类中,无法实例化变量或函数 静态类的主要特性 仅包含静态成员 无法实例化 静态类的本质,时一个抽象的密封类,所以不能被继承 ...

  9. WinForm中TabControl的使用

    TabControl和TabPage之间有一个默认颜色的边框,很难去除,需要重写TabControl控件重绘区域 public class FullTabControl : TabControl { ...

  10. 《C#多线程编程实战》2.7 CountDownEvent

    这个同步线程的类大概是东北的. 很有意思. 会限定你的线程使用的次数,更形象一点的像是你妈,提前准备好你要使用的线程的次数,用不完还不高兴那种的. 使用顺序基本就是 实例化  填充线程的启动次数 使用 ...