推不动式子

我们考虑每一个$w_i$对答案的贡献,因为题目中定义集合的价值为$W(S) = \left | S \right |\sum_{x \in S}w_x$,这个系数$\left | S \right |$可以看作集合中所有的元素(包括$i$自己)对$i$产生了一次贡献,那么我们考虑一个元素$j$对$i$的贡献:

1、$j == i$的时候,相当于求把$n$个小球放到$k$个盒子里面的方案数,为$S(n, k)$($S$表示第二类斯特林数)。

2、$j \neq i$的时候,只有$j$和$i$放在同一个集合里面才能产生贡献,为$S(n - 1, k)$。

然后代入第二类斯特林数的通项公式直接算就好了。

最后的答案就是

$$(S(n, k) + (n - 1)S(n - 1, k)) * \sum_{i = 1}^{n}w_i$$

时间复杂度$O(klogk)$。

另外一种高能的推法:传送门

Code:

#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll; const int N = 2e5 + ;
const ll P = 1e9 + ; ll sum = , fac[N], inv[N]; inline ll fpow(ll x, ll y) {
ll res = 1LL;
for (; y > ; y >>= ) {
if (y & ) res = res * x % P;
x = x * x % P;
}
return res;
} inline ll getS(int n, int k) {
ll res = ;
for (int i = ; i <= k; i++) {
ll opt = i & ? -1LL : 1LL;
res = (res + opt * inv[i] % P * fpow(k - i, n) % P * inv[k - i] % P + P) % P;
}
return res;
} int main() {
int n, k;
scanf("%d%d", &n, &k);
for (int i = ; i <= n; i++) {
ll now; scanf("%lld", &now);
sum = (sum + now) % P;
} fac[] = ;
for (int i = ; i <= n; i++) fac[i] = fac[i - ] * i % P;
inv[n] = fpow(fac[n], P - );
for (int i = n - ; i >= ; i--) inv[i] = inv[i + ] * (i + ) % P; ll ans = (getS(n, k) + (n - ) * getS(n - , k) % P) % P;
ans = ans * sum % P;
printf("%lld\n", ans); return ;
}

CF 961G Partitions的更多相关文章

  1. 【题解】Codeforces 961G Partitions

    [题解]Codeforces 961G Partitions cf961G 好题啊哭了,但是如果没有不小心看了一下pdf后面一页的提示根本想不到 题意 已知\(U=\{w_i\}\),求: \[ \s ...

  2. 「CF 961G」Partitions

    题目链接 戳我 \(Solution\) 首先,这个直接推式子.自己推去 所以我们来想一想一些巧妙的方法 \(|S|\sum w_i\) 可以转化为:划分好集合后,每个点都对当前点有\(w_i\)的贡 ...

  3. [Codeforces 961G]Partitions

    Description 题库链接 给你 \(n\) 个不同的元素组成的集合 \(R\) ,每个元素有一个权值 \(w\) .对于一个子集集合 \(S\) ,它的价值为 \(W(S)=|S|\cdot\ ...

  4. [总结]其他杂项数学相关(定理&证明&板子)

    目录 写在前面 一类反演问题 莫比乌斯反演 快速莫比乌斯变换(反演)与子集卷积 莫比乌斯变换(反演) 子集卷积 二项式反演 内容 证明 应用举例 另一形式 斯特林反演 第一类斯特林数 第二类斯特林数 ...

  5. CF memsql Start[c]UP 2.0 B

    CF memsql Start[c]UP 2.0 B B. Distributed Join time limit per test 1 second memory limit per test 25 ...

  6. Amphetamine的cf日记

    之前挂上的 今天填坑 2018.2.14 #462 A 给两个集合,B分别可以从一个集合中选一个数,B想乘积最大,A想最小,A可以删除一个第一个集合中的元素,问最小能达到多少. 这题..水死啦.我居然 ...

  7. ORA-00494: enqueue [CF] held for too long (more than 900 seconds) by 'inst 1, osid 5166'

    凌晨收到同事电话,反馈应用程序访问Oracle数据库时报错,当时现场现象确认: 1. 应用程序访问不了数据库,使用SQL Developer测试发现访问不了数据库.报ORA-12570 TNS:pac ...

  8. cf之路,1,Codeforces Round #345 (Div. 2)

     cf之路,1,Codeforces Round #345 (Div. 2) ps:昨天第一次参加cf比赛,比赛之前为了熟悉下cf比赛题目的难度.所以做了round#345连试试水的深浅.....   ...

  9. cf Round 613

    A.Peter and Snow Blower(计算几何) 给定一个点和一个多边形,求出这个多边形绕这个点旋转一圈后形成的面积.保证这个点不在多边形内. 画个图能明白 这个图形是一个圆环,那么就是这个 ...

随机推荐

  1. 51nod 1012 最小公倍数LCM

    输入2个正整数A,B,求A与B的最小公倍数. 收起   输入 2个数A,B,中间用空格隔开.(1<= A,B <= 10^9) 输出 输出A与B的最小公倍数. 输入样例 30 105 输出 ...

  2. 并发问题 关于Redis

    并发问题 关于Redis [吐槽]Jimesembria 付费请人解这个BUG , 有没有php同学有兴趣,(问题原因是理论上是5分钟内不生产同样金额的订单, 但是由于并发原因没控制好) 10:34: ...

  3. Oracle Database 12.2新特性详解

    在2015年旧金山的Oracle OpenWorld大会上,Oracle发布了Database 12.2的Beta版本,虽然Beta版本只对部分用户开放,但是大会上已经公布了12.2的很多重要的新特性 ...

  4. input type="file" accept="image/*"上传文件慢的问题解决办法

    相信大家都写过<input type="file" name="file" class="element" accept=" ...

  5. Nginx 教程示例

    https://www.cnblogs.com/jingmoxukong/p/5945200.html

  6. 【转】CentOs中Apache开启rewrite模块详解

    rewrite是apache环境的一个伪静态功能了,如果我们没有没让Apache开启rewrite功能,网站上所有的rewrite规则都不可使用. centos的配置文件放在: /etc/httpd/ ...

  7. Tarjan模版(链式向前星表示方法)

    这道模版用到了链式向前星表示法: struct node { int v,next; }edge[]; void add(int x,int y) { edge[++cnt].next=heads[x ...

  8. Ajax 请求session过期的统一处理

    public class LoginInterceptor extends HandlerInterceptorAdapter { @SuppressWarnings("unused&quo ...

  9. php中的list方法

    list 栗子一: <?php $info = array('coffee', 'brown', 'caffeine'); // 列出所有变量 list($drink, $color, $pow ...

  10. python开发模块基础:re正则

    一,re模块的用法 #findall #直接返回一个列表 #正常的正则表达式 #但是只会把分组里的显示出来#search #返回一个对象 .group()#match #返回一个对象 .group() ...