首先很明显剑的选择是唯一的,直接用multiset即可。

  接下来可以发现每条龙都是一个模线性方程。设攻击第i条龙的剑的攻击力为$s_i$,则$s_ix\equiv a_i\ (mod\ p_i)$。

  现在需要将方程化成$x\equiv c_i\ (mod\ m_i)$的形式,从而使用exCRT解决。

  变式:$s_ix+p_iy=a_i$,先同除以$gcd(s_i,p_i)$,再使用exgcd解不定方程,求x的最小正整数解。

  注意判无解,exCRT结束之后注意要使$x\geqslant max(\frac{a_i}{s_i})$

 #include<set>
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
typedef long long ll;
using namespace std; const int N=;
multiset<ll>S;
bool mark;
int n,k,T;
ll mx,a[N],p[N],more[N],s[N],c[N],m[N]; ll gcd(ll a,ll b){ return b ? gcd(b,a%b) : a; } ll mul(ll a,ll b,ll mod){
ll res=; a%=mod; b%=mod;
for (; b; a=(a<<)%mod,b>>=)
if (b & ) res=(res+a)%mod;
return res;
} void exgcd(ll a,ll b,ll &x,ll &y){
if (!b){ x=; y=; return; }
exgcd(b,a%b,y,x); y-=(a/b)*x;
} ll inv(ll a,ll b){ ll x,y; exgcd(a,b,x,y); x=(x%b+b)%b; return x; } bool merge(ll c1,ll c2,ll m1,ll m2,ll &c3,ll &m3){
ll d=gcd(m1,m2); m3=m1/d*m2;
if (c2<c1) swap(c1,c2),swap(m1,m2);
if ((c2-c1)%d) return ;
c3=(mul(mul(inv(m1/d,m2/d),(c2-c1)/d,m2/d),m1,m3)+c1)%m3;
return ;
} void work(){
scanf("%d%d",&n,&k); mark=; mx=; S.clear();
rep(i,,n) scanf("%lld",&a[i]);
rep(i,,n) scanf("%lld",&p[i]);
rep(i,,n) scanf("%lld",&more[i]);
rep(i,,k) scanf("%lld",&s[i]),S.insert(s[i]);
rep(i,,n){
multiset<ll>::iterator it=S.upper_bound(a[i]);
if (it!=S.begin()) it--;
ll s=*it; S.erase(it); S.insert(more[i]);
mx=max(mx,(a[i]-)/s+);
ll d=gcd(s,p[i]);
if (a[i]%d) { mark=; break; }
m[i]=p[i]/d; c[i]=mul(inv(s/d,m[i]),a[i]/d,m[i]);
}
if (!mark) { puts("-1"); return; }
rep(i,,n) if (!merge(c[i-],c[i],m[i-],m[i],c[i],m[i])) { mark=; break; }
if (!mark) { puts("-1"); return; }
if (c[n]<mx) c[n]+=((mx-c[n]-)/m[n]+)*m[n];
printf("%lld\n",c[n]);
} int main(){
freopen("dragon.in","r",stdin);
freopen("dragon.out","w",stdout);
for (scanf("%d",&T); T--; ) work();
return ;
}

[NOI2018]屠龙勇士(exCRT)的更多相关文章

  1. Luogu4774 NOI2018 屠龙勇士 ExCRT

    传送门 原来NOI也会出裸题啊-- 用multiset求出对付每一个BOSS使用的武器威力\(ATK_i\),可以得到\(m\)个式子\(ATK_ix \equiv a_i \mod p_i\) 看起 ...

  2. BZOJ5418:[NOI2018]屠龙勇士(exCRT,exgcd,set)

    Description Input Output Sample Input 23 33 5 74 6 107 3 91 9 10003 23 5 64 8 71 1 11 1 Sample Outpu ...

  3. BZOJ 5418: [Noi2018]屠龙勇士 EXCRT+multiset

    题解:求解形如 $A[i]ans\equiv b[i](mod$ $p[i])$ 的 $x$ 的最小正整数解. 考虑只有一个等式,那么可以直接化成 $exgcd$ 的形式:$A[i]ans+p[i]y ...

  4. BZOJ_5418_[Noi2018]屠龙勇士_exgcd+excrt

    BZOJ_5418_[Noi2018]屠龙勇士_exgcd+excrt Description www.lydsy.com/JudgeOnline/upload/noi2018day2.pdf 每次用 ...

  5. P4774 [NOI2018]屠龙勇士

    P4774 [NOI2018]屠龙勇士 先平衡树跑出打每条龙的atk t[] 然后每条龙有\(xt \equiv a[i](\text{mod }p[i])\) 就是\(xt+kp[i]=a[i]\) ...

  6. uoj396 [NOI2018]屠龙勇士

    [NOI2018]屠龙勇士 描述 小 D 最近在网上发现了一款小游戏.游戏的规则如下: 游戏的目标是按照编号 1∼n 顺序杀掉 n 条巨龙,每条巨龙拥有一个初始的生命值 ai .同时每条巨龙拥有恢复能 ...

  7. BZOJ5418[Noi2018]屠龙勇士——exgcd+扩展CRT+set

    题目链接: [Noi2018]屠龙勇士 题目大意:有$n$条龙和初始$m$个武器,每个武器有一个攻击力$t_{i}$,每条龙有一个初始血量$a_{i}$和一个回复值$p_{i}$(即只要血量为负数就一 ...

  8. [洛谷P4774] [NOI2018]屠龙勇士

    洛谷题目链接:[NOI2018]屠龙勇士 因为markdown复制过来有点炸格式,所以看题目请戳上面. 题解: 因为杀死一条龙的条件是在攻击\(x\)次,龙恢复\(y\)次血量\((y\in N^{* ...

  9. 洛谷 P4774 [NOI2018] 屠龙勇士

    链接:P4774 前言: 交了18遍最后发现是多组数据没清空/ll 题意: 其实就是个扩中. 分析过程: 首先发现根据题目描述的选择剑的方式,每条龙对应的剑都是固定的,有查询前驱,后继(在该数不存在前 ...

随机推荐

  1. 【BZOJ 2006】[NOI2010]超级钢琴 ST

    我们先把所有最左端对应的最优右端入堆,eg: z  在[l,r](由题目给出的L,R决定)之间的最优解 y,然后出堆以后,再入堆z,y-1,z,y+1,那么我们只需要用st找最大前缀和就好了(ST是一 ...

  2. Codeforces Global Round 1 (A-E题解)

    Codeforces Global Round 1 题目链接:https://codeforces.com/contest/1110 A. Parity 题意: 给出{ak},b,k,判断a1*b^( ...

  3. bzoj 1517 [POI2006]Met 贪心

    [POI2006]Met Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 203  Solved: 108[Submit][Status][Discus ...

  4. ansible+docker

    1.准备镜像: 1007 docker run -itd --name client2 ff37bc5ab732 1008 docker run -itd --name client ff37bc5a ...

  5. powershell for rename server name

    Rename server name if server has not yet joined AD $Hostname = "newname" $username = " ...

  6. C#弱引用

    加菲猫 Just have a little faith. C#弱引用 .NET框架提供了另一有趣的特色,被用于实现多样的高速缓存.在.NET中弱引用通过System.WeakReference类实现 ...

  7. xcode 10 出现 :-1: Multiple commands produce '/Users/.../Library/Developer/Xcode/DerivedData/.../Build/Products/Dev-iphonesimulator/TLYShyNavBar/TLYShyNavBar.framework/Info.plist': 1) Target 'TLYShyNavB

    错误提示如下: :-1: Multiple commands produce '/Users/.../Library/Developer/Xcode/DerivedData/.../Build/Pro ...

  8. Google的C++开源代码项目

    Google的C++开源代码项目 http://www.open-open.com/lib/view/open1413873531356.html v8  -  V8 JavaScript Engin ...

  9. Selenium IDE安装和检查获取的控件路径技巧

    来源:http://www.jianshu.com/p/0ea2dc83549f 从学习Selenium 开始,都是自己写脚本,后来得知有个插件Selenium IDE可以录制脚本,也懒得用了,觉得自 ...

  10. linux下卸载Oracle

    1.卸载数据库软件--10g[oracle]# cd /u01/app/oracle/product/10.2.0/db_1/oui/bin[oracle]# ./runInstaller -igno ...