题意:给一棵树,有三个操作:①询问两点$(x,y)$之间的距离②把$x$和原来的父亲断开并连到它的$h$级祖先,作为新父亲最右的儿子③询问与根节点距离为$k$的点中最右的点是哪个点

用出栈入栈序$s_{1\cdots 2n}$来维护整棵树,入栈记$1$出栈记$-1$,那么一个节点$x$的深度就是$\sum\limits_{i=1}^{in_x}s_x$

每个平衡树节点记1.这个节点是出栈还是入栈2.子树和3.最大前缀和4.最小前缀和,那么我们就可以在平衡树上二分找到最右的深度为$d$的节点(注意如果找到的是出栈点应该返回父亲,因为有个$-1$)

对于操作①,把$(in_x,in_y)$提出来,那么这个区间内深度最小的节点就是$lca_{x,y}$

对于操作②,找到那个$h$级祖先,直接序列移动即可

对于操作③,直接找

为了使我的splay不残废就用splay写了一下

注意因为邻接表的性质,加边要倒着加

#include<stdio.h>
int ch[200010][2],fa[200010],v[200010],s[200010],mx[200010],mn[200010],h[100010],nex[100010],to[100010],pa[100010],tmp[100010],p[200010],M,rt;
void add(int a,int b){
	M++;
	to[M]=b;
	nex[M]=h[a];
	h[a]=M;
}
void dfs(int x){
	M++;
	p[M]=(x<<1)-1;
	v[(x<<1)-1]=1;
	for(int i=h[x];i;i=nex[i]){
		pa[to[i]]=x;
		dfs(to[i]);
	}
	M++;
	p[M]=x<<1;
	v[x<<1]=-1;
}
#define ls ch[x][0]
#define rs ch[x][1]
int max(int a,int b){return a>b?a:b;}
int min(int a,int b){return a<b?a:b;}
void pushup(int x){
	s[x]=s[ls]+s[rs]+v[x];
	mx[x]=max(mx[ls],s[ls]+v[x]+max(mx[rs],0));
	mn[x]=min(mn[ls],s[ls]+v[x]+min(mn[rs],0));
}
int build(int l,int r){
	int mid=(l+r)>>1;
	int&x=p[mid];
	if(l<mid){
		ls=build(l,mid-1);
		fa[ls]=x;
	}
	if(mid<r){
		rs=build(mid+1,r);
		fa[rs]=x;
	}
	pushup(x);
	return x;
}
void rot(int x){
	int y,z,f,B;
	y=fa[x];
	z=fa[y];
	f=(ch[y][0]==x);
	B=ch[x][f];
	fa[x]=z;
	fa[y]=x;
	if(B)fa[B]=y;
	ch[x][f]=y;
	ch[y][f^1]=B;
	if(ch[z][0]==y)ch[z][0]=x;
	if(ch[z][1]==y)ch[z][1]=x;
	pushup(y);
	pushup(x);
}
void splay(int x,int gl){
	int y,z;
	while(fa[x]!=gl){
		y=fa[x];
		z=fa[y];
		if(z!=gl)rot((ch[z][0]==y&&ch[y][0]==x)||(ch[z][1]==y&&ch[y][1]==x)?y:x);
		rot(x);
	}
}
int getdis(int x,int y){
	x=(x<<1)-1;
	y=(y<<1)-1;
	int dx,dy,dl;
	splay(x,0);
	dx=s[ls]+v[x];
	splay(y,0);
	dy=s[ch[y][0]]+v[y];
	splay(x,0);
	splay(y,x);
	rt=x;
	dl=min(dx,dy);
	if(ls==y)
		dl=min(dl,s[ch[y][0]]+v[y]+mn[ch[y][1]]);
	else
		dl=min(dl,s[ls]+v[x]+mn[ch[y][0]]);
	return dx+dy-(dl<<1);
}
int find(int x,int d){
	if(mx[rs]>=d-s[ls]-v[x]&&mn[rs]<=d-s[ls]-v[x])return find(rs,d-s[ls]-v[x]);
	if(s[ls]+v[x]==d)return(x&1)?(x+1)>>1:pa[x>>1];
	return find(ls,d);
}
int pre(int x){
	splay(x,0);
	for(x=ls;rs;x=rs);
	return x;
}
int nx(int x){
	splay(x,0);
	for(x=rs;ls;x=ls);
	return x;
}
void change(int u,int h){
	int x=(u<<1)-1,L,R,t;
	splay(x,0);
	pa[u]=find(ls,s[ls]+v[x]-h);
	L=pre(x);
	R=nx(u<<1);
	splay(L,0);
	splay(R,L);
	t=ch[R][0];
	ch[R][0]=0;
	pushup(R);
	pushup(L);
	L=pre(pa[u]<<1);
	R=(pa[u]<<1);
	splay(L,0);
	splay(R,L);
	ch[R][0]=t;
	fa[t]=R;
	pushup(R);
	pushup(L);
	rt=L;
}
#define inf 1000000000
int main(){
	mx[0]=-inf;
	mn[0]=inf;
	int n,m,i,x,y;
	scanf("%d%d",&n,&m);
	for(i=1;i<=n;i++){
		scanf("%d",&y);
		for(x=1;x<=y;x++)scanf("%d",tmp+x);
		for(x=y;x>0;x--)add(i,tmp[x]);
	}
	M=0;
	dfs(1);
	rt=build(1,n<<1);
	while(m--){
		scanf("%d%d",&i,&x);
		if(i!=3)scanf("%d",&y);
		if(i==1)printf("%d\n",getdis(x,y));
		if(i==2)change(x,y);
		if(i==3)printf("%d\n",find(rt,x+1));
	}
}

[CF414E]Mashmokh's Designed Problem的更多相关文章

  1. @codeforces - 414E@ Mashmokh's Designed Problem

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定一棵 n 个点的树,每个点的儿子是有序的. 现给定 m 次操 ...

  2. [JZOJ3691] 【CF414E】Mashmokh's Designed tree

    题目 题目大意 给你一棵树,接下来对这棵树进行三种操作: 1.询问两点之间的距离. 2.让某个点变为它原来的第\(h\)个祖先的最后一个儿子. 3.求\(dfs\)序中最后一个深度为\(k\)的点. ...

  3. HDU1086You can Solve a Geometry Problem too(判断线段相交)

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3 ...

  4. [转]Amazon DynamoDB – a Fast and Scalable NoSQL Database Service Designed for Internet Scale Applications

    This article is from blog of Amazon CTO Werner Vogels. -------------------- Today is a very exciting ...

  5. hdu 1086 You can Solve a Geometry Problem too

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3 ...

  6. you can Solve a Geometry Problem too(hdoj1086)

    Problem Description Many geometry(几何)problems were designed in the ACM/ICPC. And now, I also prepare ...

  7. C#学习日志 day10 -------------- problem statement

    Revision History Date Issue Description Author 15/May/2015 1.0 Finish most of the designed function. ...

  8. HDU 4716 A Computer Graphics Problem

    A Computer Graphics Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (J ...

  9. (hdu step 7.1.2)You can Solve a Geometry Problem too(乞讨n条线段,相交两者之间的段数)

    称号: You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/ ...

随机推荐

  1. Ajax缓存问题怎么解决?

    项目有时要用一些Ajax的效果,因为比较简单,也就没有去用什么Ajax.net之类的东西,手写代码也就实现了.第二天,有人向我报告错误:说是只有第一次读取的值正常,后面的值都不正常:我调试了一下 ,确 ...

  2. shell里的getopts

    By francis_hao    Jul 5,2017   getopts是shell的一个内置命令. 概述 getopts optstring name [args]OPTIND,OPTARG,O ...

  3. poj 1523 割点 tarjan

    Description Consider the two networks shown below. Assuming that data moves around these networks on ...

  4. Oracle SQL 疑难解析读书笔记(二、汇总和聚合数据)

    2.1 对某字段的值进行汇总 仅仅在两种特殊情况下,Oracle在聚合函数中考虑了NULL值.第一种是在GROUPING功能里,用来检验包含了NULL值的分析函数的结果,是直接由所在的表得来,还是由分 ...

  5. 有关getClassLoader().getResourceAsStream(fileName)、class.getResourceAsStream(fileName)和().getContextClassLoader().getResourceAsStream(fileName)的区别

    一:前言 在自己获取属性时,碰见了XX.class.getResourceAsStream(fileName),自己对这个其实不是很理解,上网查了下资料,又看到了上述的几个,所以就研究了下. 二:内容 ...

  6. Nginx反向代理丢失cookie的问题

    今天在测试环境进行测试时发现有个页面无论如何都进不去了,经过调试发现,JSESSIONID的path和我访问应用的工程不相同!我访问的应用是/xxx/,而JSESSIONID的path是/yyy/,这 ...

  7. windows下mysql 5.7的配置全过程

    这是一套在好多次的安装下总结出来的经验,包括很多种遇到的问题,查过很多资料,特此总结一下. 一.从官网下载MySQL的zip(免安装的) 解压mysql-5.7.11-winx64.zip到自己指定的 ...

  8. html5 游戏开发

    近来想做html5游戏开发些小东西玩一下,因为手边就是笔记本,想怎么玩就怎么玩了,今年可以说是非常重要特殊的一年,感觉有些倒霉,不过,心态最重要,该怎么做的时候就去怎么做吧,日子的24小时是不会变的, ...

  9. Java序列化与反序列化是什么?为什么需要序列化与反序列化?如何实现Java序列化与反序列化?

    Java序列化与反序列化是什么?为什么需要序列化与反序列化?如何实现Java序列化与反序列化?本文围绕这些问题进行了探讨.  1.Java序列化与反序列化  Java序列化是指把Java对象转换为字节 ...

  10. react框架

    react 其实react=vue, 区别:vue-  双向数据绑定, react  单向数据绑定. 中文文档:https://react.docschina.org/ 第一步:安装方式,不能直接引入 ...