题意:给一棵树,有三个操作:①询问两点$(x,y)$之间的距离②把$x$和原来的父亲断开并连到它的$h$级祖先,作为新父亲最右的儿子③询问与根节点距离为$k$的点中最右的点是哪个点

用出栈入栈序$s_{1\cdots 2n}$来维护整棵树,入栈记$1$出栈记$-1$,那么一个节点$x$的深度就是$\sum\limits_{i=1}^{in_x}s_x$

每个平衡树节点记1.这个节点是出栈还是入栈2.子树和3.最大前缀和4.最小前缀和,那么我们就可以在平衡树上二分找到最右的深度为$d$的节点(注意如果找到的是出栈点应该返回父亲,因为有个$-1$)

对于操作①,把$(in_x,in_y)$提出来,那么这个区间内深度最小的节点就是$lca_{x,y}$

对于操作②,找到那个$h$级祖先,直接序列移动即可

对于操作③,直接找

为了使我的splay不残废就用splay写了一下

注意因为邻接表的性质,加边要倒着加

#include<stdio.h>
int ch[200010][2],fa[200010],v[200010],s[200010],mx[200010],mn[200010],h[100010],nex[100010],to[100010],pa[100010],tmp[100010],p[200010],M,rt;
void add(int a,int b){
	M++;
	to[M]=b;
	nex[M]=h[a];
	h[a]=M;
}
void dfs(int x){
	M++;
	p[M]=(x<<1)-1;
	v[(x<<1)-1]=1;
	for(int i=h[x];i;i=nex[i]){
		pa[to[i]]=x;
		dfs(to[i]);
	}
	M++;
	p[M]=x<<1;
	v[x<<1]=-1;
}
#define ls ch[x][0]
#define rs ch[x][1]
int max(int a,int b){return a>b?a:b;}
int min(int a,int b){return a<b?a:b;}
void pushup(int x){
	s[x]=s[ls]+s[rs]+v[x];
	mx[x]=max(mx[ls],s[ls]+v[x]+max(mx[rs],0));
	mn[x]=min(mn[ls],s[ls]+v[x]+min(mn[rs],0));
}
int build(int l,int r){
	int mid=(l+r)>>1;
	int&x=p[mid];
	if(l<mid){
		ls=build(l,mid-1);
		fa[ls]=x;
	}
	if(mid<r){
		rs=build(mid+1,r);
		fa[rs]=x;
	}
	pushup(x);
	return x;
}
void rot(int x){
	int y,z,f,B;
	y=fa[x];
	z=fa[y];
	f=(ch[y][0]==x);
	B=ch[x][f];
	fa[x]=z;
	fa[y]=x;
	if(B)fa[B]=y;
	ch[x][f]=y;
	ch[y][f^1]=B;
	if(ch[z][0]==y)ch[z][0]=x;
	if(ch[z][1]==y)ch[z][1]=x;
	pushup(y);
	pushup(x);
}
void splay(int x,int gl){
	int y,z;
	while(fa[x]!=gl){
		y=fa[x];
		z=fa[y];
		if(z!=gl)rot((ch[z][0]==y&&ch[y][0]==x)||(ch[z][1]==y&&ch[y][1]==x)?y:x);
		rot(x);
	}
}
int getdis(int x,int y){
	x=(x<<1)-1;
	y=(y<<1)-1;
	int dx,dy,dl;
	splay(x,0);
	dx=s[ls]+v[x];
	splay(y,0);
	dy=s[ch[y][0]]+v[y];
	splay(x,0);
	splay(y,x);
	rt=x;
	dl=min(dx,dy);
	if(ls==y)
		dl=min(dl,s[ch[y][0]]+v[y]+mn[ch[y][1]]);
	else
		dl=min(dl,s[ls]+v[x]+mn[ch[y][0]]);
	return dx+dy-(dl<<1);
}
int find(int x,int d){
	if(mx[rs]>=d-s[ls]-v[x]&&mn[rs]<=d-s[ls]-v[x])return find(rs,d-s[ls]-v[x]);
	if(s[ls]+v[x]==d)return(x&1)?(x+1)>>1:pa[x>>1];
	return find(ls,d);
}
int pre(int x){
	splay(x,0);
	for(x=ls;rs;x=rs);
	return x;
}
int nx(int x){
	splay(x,0);
	for(x=rs;ls;x=ls);
	return x;
}
void change(int u,int h){
	int x=(u<<1)-1,L,R,t;
	splay(x,0);
	pa[u]=find(ls,s[ls]+v[x]-h);
	L=pre(x);
	R=nx(u<<1);
	splay(L,0);
	splay(R,L);
	t=ch[R][0];
	ch[R][0]=0;
	pushup(R);
	pushup(L);
	L=pre(pa[u]<<1);
	R=(pa[u]<<1);
	splay(L,0);
	splay(R,L);
	ch[R][0]=t;
	fa[t]=R;
	pushup(R);
	pushup(L);
	rt=L;
}
#define inf 1000000000
int main(){
	mx[0]=-inf;
	mn[0]=inf;
	int n,m,i,x,y;
	scanf("%d%d",&n,&m);
	for(i=1;i<=n;i++){
		scanf("%d",&y);
		for(x=1;x<=y;x++)scanf("%d",tmp+x);
		for(x=y;x>0;x--)add(i,tmp[x]);
	}
	M=0;
	dfs(1);
	rt=build(1,n<<1);
	while(m--){
		scanf("%d%d",&i,&x);
		if(i!=3)scanf("%d",&y);
		if(i==1)printf("%d\n",getdis(x,y));
		if(i==2)change(x,y);
		if(i==3)printf("%d\n",find(rt,x+1));
	}
}

[CF414E]Mashmokh's Designed Problem的更多相关文章

  1. @codeforces - 414E@ Mashmokh's Designed Problem

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定一棵 n 个点的树,每个点的儿子是有序的. 现给定 m 次操 ...

  2. [JZOJ3691] 【CF414E】Mashmokh's Designed tree

    题目 题目大意 给你一棵树,接下来对这棵树进行三种操作: 1.询问两点之间的距离. 2.让某个点变为它原来的第\(h\)个祖先的最后一个儿子. 3.求\(dfs\)序中最后一个深度为\(k\)的点. ...

  3. HDU1086You can Solve a Geometry Problem too(判断线段相交)

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3 ...

  4. [转]Amazon DynamoDB – a Fast and Scalable NoSQL Database Service Designed for Internet Scale Applications

    This article is from blog of Amazon CTO Werner Vogels. -------------------- Today is a very exciting ...

  5. hdu 1086 You can Solve a Geometry Problem too

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3 ...

  6. you can Solve a Geometry Problem too(hdoj1086)

    Problem Description Many geometry(几何)problems were designed in the ACM/ICPC. And now, I also prepare ...

  7. C#学习日志 day10 -------------- problem statement

    Revision History Date Issue Description Author 15/May/2015 1.0 Finish most of the designed function. ...

  8. HDU 4716 A Computer Graphics Problem

    A Computer Graphics Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (J ...

  9. (hdu step 7.1.2)You can Solve a Geometry Problem too(乞讨n条线段,相交两者之间的段数)

    称号: You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/ ...

随机推荐

  1. Could not resolve com.android.support:multidex:1.0.2

    http://blog.csdn.net/goodlixueyong/article/details/50992835

  2. fuser命令找到占用资源的进程

    fuser 概述 fuser命令是用来显示所有正在使用着指定的file, file system 或者 sockets的进程信息. 例一: #fuser –m –u /mnt/usb1 /mnt/us ...

  3. Java之戳中痛点 - (3)三目运算符的两个操作数类型尽量一致

    先看一个例子: package com.test; public class TernaryOperator { public static void main(String[] args) { in ...

  4. canvas知识01

    本文转自:http://www.cnblogs.com/jsdarkhorse/archive/2012/06/29/2568451.html 更多参考:http://www.cnblogs.com/ ...

  5. ios 全方位修改工程名

    本文针对于彻底修改iOS工程名,不需要另外建工程,会整理的跟新工程完全一样 1. 选中旧工程名,改为新的 然后选择rename 2. 依次选择黄色文件夹,修改名字,千万不要在Xcode外修改!!! 修 ...

  6. 【UVALive4685-Succession】树形DP

    http://acm.hust.edu.cn/vjudge/problem/14338 题意:给定一棵树,每个点有一个值,让你选择k个点,并且这k个点是连在一起的(从任意一个点出发,可以遍历完所有选择 ...

  7. [BZOJ3238][Ahoi2013]差异解题报告|后缀数组

    Description 先分析一下题目,我们显然可以直接算出sigma(len[Ti]+len[Tj])的值=(n-1)*n*(n+1)/2 接着就要去算这个字符串中所有后缀的两两最长公共前缀总和 首 ...

  8. 手机端的META

    一.天猫 <title>天猫触屏版</title> <meta content="text/html; charset=utf-8" http-equ ...

  9. MongoDB安装成为Windows服务

    使用以下命令将MongoDB安装成为Windows服务.笔者的MongoDB目录为C:\Program Files\MongoDB\Server\3.6\bin 切换到C:\Program Files ...

  10. QML与C++混合编程详解(转)

    原文转自:http://blog.csdn.net/ieearth/article/details/42243553 原文转自:https://www.cnblogs.com/findumars/p/ ...