[CF414E]Mashmokh's Designed Problem
题意:给一棵树,有三个操作:①询问两点$(x,y)$之间的距离②把$x$和原来的父亲断开并连到它的$h$级祖先,作为新父亲最右的儿子③询问与根节点距离为$k$的点中最右的点是哪个点
用出栈入栈序$s_{1\cdots 2n}$来维护整棵树,入栈记$1$出栈记$-1$,那么一个节点$x$的深度就是$\sum\limits_{i=1}^{in_x}s_x$
每个平衡树节点记1.这个节点是出栈还是入栈2.子树和3.最大前缀和4.最小前缀和,那么我们就可以在平衡树上二分找到最右的深度为$d$的节点(注意如果找到的是出栈点应该返回父亲,因为有个$-1$)
对于操作①,把$(in_x,in_y)$提出来,那么这个区间内深度最小的节点就是$lca_{x,y}$
对于操作②,找到那个$h$级祖先,直接序列移动即可
对于操作③,直接找
为了使我的splay不残废就用splay写了一下
注意因为邻接表的性质,加边要倒着加
#include<stdio.h> int ch[200010][2],fa[200010],v[200010],s[200010],mx[200010],mn[200010],h[100010],nex[100010],to[100010],pa[100010],tmp[100010],p[200010],M,rt; void add(int a,int b){ M++; to[M]=b; nex[M]=h[a]; h[a]=M; } void dfs(int x){ M++; p[M]=(x<<1)-1; v[(x<<1)-1]=1; for(int i=h[x];i;i=nex[i]){ pa[to[i]]=x; dfs(to[i]); } M++; p[M]=x<<1; v[x<<1]=-1; } #define ls ch[x][0] #define rs ch[x][1] int max(int a,int b){return a>b?a:b;} int min(int a,int b){return a<b?a:b;} void pushup(int x){ s[x]=s[ls]+s[rs]+v[x]; mx[x]=max(mx[ls],s[ls]+v[x]+max(mx[rs],0)); mn[x]=min(mn[ls],s[ls]+v[x]+min(mn[rs],0)); } int build(int l,int r){ int mid=(l+r)>>1; int&x=p[mid]; if(l<mid){ ls=build(l,mid-1); fa[ls]=x; } if(mid<r){ rs=build(mid+1,r); fa[rs]=x; } pushup(x); return x; } void rot(int x){ int y,z,f,B; y=fa[x]; z=fa[y]; f=(ch[y][0]==x); B=ch[x][f]; fa[x]=z; fa[y]=x; if(B)fa[B]=y; ch[x][f]=y; ch[y][f^1]=B; if(ch[z][0]==y)ch[z][0]=x; if(ch[z][1]==y)ch[z][1]=x; pushup(y); pushup(x); } void splay(int x,int gl){ int y,z; while(fa[x]!=gl){ y=fa[x]; z=fa[y]; if(z!=gl)rot((ch[z][0]==y&&ch[y][0]==x)||(ch[z][1]==y&&ch[y][1]==x)?y:x); rot(x); } } int getdis(int x,int y){ x=(x<<1)-1; y=(y<<1)-1; int dx,dy,dl; splay(x,0); dx=s[ls]+v[x]; splay(y,0); dy=s[ch[y][0]]+v[y]; splay(x,0); splay(y,x); rt=x; dl=min(dx,dy); if(ls==y) dl=min(dl,s[ch[y][0]]+v[y]+mn[ch[y][1]]); else dl=min(dl,s[ls]+v[x]+mn[ch[y][0]]); return dx+dy-(dl<<1); } int find(int x,int d){ if(mx[rs]>=d-s[ls]-v[x]&&mn[rs]<=d-s[ls]-v[x])return find(rs,d-s[ls]-v[x]); if(s[ls]+v[x]==d)return(x&1)?(x+1)>>1:pa[x>>1]; return find(ls,d); } int pre(int x){ splay(x,0); for(x=ls;rs;x=rs); return x; } int nx(int x){ splay(x,0); for(x=rs;ls;x=ls); return x; } void change(int u,int h){ int x=(u<<1)-1,L,R,t; splay(x,0); pa[u]=find(ls,s[ls]+v[x]-h); L=pre(x); R=nx(u<<1); splay(L,0); splay(R,L); t=ch[R][0]; ch[R][0]=0; pushup(R); pushup(L); L=pre(pa[u]<<1); R=(pa[u]<<1); splay(L,0); splay(R,L); ch[R][0]=t; fa[t]=R; pushup(R); pushup(L); rt=L; } #define inf 1000000000 int main(){ mx[0]=-inf; mn[0]=inf; int n,m,i,x,y; scanf("%d%d",&n,&m); for(i=1;i<=n;i++){ scanf("%d",&y); for(x=1;x<=y;x++)scanf("%d",tmp+x); for(x=y;x>0;x--)add(i,tmp[x]); } M=0; dfs(1); rt=build(1,n<<1); while(m--){ scanf("%d%d",&i,&x); if(i!=3)scanf("%d",&y); if(i==1)printf("%d\n",getdis(x,y)); if(i==2)change(x,y); if(i==3)printf("%d\n",find(rt,x+1)); } }
[CF414E]Mashmokh's Designed Problem的更多相关文章
- @codeforces - 414E@ Mashmokh's Designed Problem
目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定一棵 n 个点的树,每个点的儿子是有序的. 现给定 m 次操 ...
- [JZOJ3691] 【CF414E】Mashmokh's Designed tree
题目 题目大意 给你一棵树,接下来对这棵树进行三种操作: 1.询问两点之间的距离. 2.让某个点变为它原来的第\(h\)个祖先的最后一个儿子. 3.求\(dfs\)序中最后一个深度为\(k\)的点. ...
- HDU1086You can Solve a Geometry Problem too(判断线段相交)
You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/3 ...
- [转]Amazon DynamoDB – a Fast and Scalable NoSQL Database Service Designed for Internet Scale Applications
This article is from blog of Amazon CTO Werner Vogels. -------------------- Today is a very exciting ...
- hdu 1086 You can Solve a Geometry Problem too
You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/3 ...
- you can Solve a Geometry Problem too(hdoj1086)
Problem Description Many geometry(几何)problems were designed in the ACM/ICPC. And now, I also prepare ...
- C#学习日志 day10 -------------- problem statement
Revision History Date Issue Description Author 15/May/2015 1.0 Finish most of the designed function. ...
- HDU 4716 A Computer Graphics Problem
A Computer Graphics Problem Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (J ...
- (hdu step 7.1.2)You can Solve a Geometry Problem too(乞讨n条线段,相交两者之间的段数)
称号: You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/ ...
随机推荐
- Could not resolve com.android.support:multidex:1.0.2
http://blog.csdn.net/goodlixueyong/article/details/50992835
- fuser命令找到占用资源的进程
fuser 概述 fuser命令是用来显示所有正在使用着指定的file, file system 或者 sockets的进程信息. 例一: #fuser –m –u /mnt/usb1 /mnt/us ...
- Java之戳中痛点 - (3)三目运算符的两个操作数类型尽量一致
先看一个例子: package com.test; public class TernaryOperator { public static void main(String[] args) { in ...
- canvas知识01
本文转自:http://www.cnblogs.com/jsdarkhorse/archive/2012/06/29/2568451.html 更多参考:http://www.cnblogs.com/ ...
- ios 全方位修改工程名
本文针对于彻底修改iOS工程名,不需要另外建工程,会整理的跟新工程完全一样 1. 选中旧工程名,改为新的 然后选择rename 2. 依次选择黄色文件夹,修改名字,千万不要在Xcode外修改!!! 修 ...
- 【UVALive4685-Succession】树形DP
http://acm.hust.edu.cn/vjudge/problem/14338 题意:给定一棵树,每个点有一个值,让你选择k个点,并且这k个点是连在一起的(从任意一个点出发,可以遍历完所有选择 ...
- [BZOJ3238][Ahoi2013]差异解题报告|后缀数组
Description 先分析一下题目,我们显然可以直接算出sigma(len[Ti]+len[Tj])的值=(n-1)*n*(n+1)/2 接着就要去算这个字符串中所有后缀的两两最长公共前缀总和 首 ...
- 手机端的META
一.天猫 <title>天猫触屏版</title> <meta content="text/html; charset=utf-8" http-equ ...
- MongoDB安装成为Windows服务
使用以下命令将MongoDB安装成为Windows服务.笔者的MongoDB目录为C:\Program Files\MongoDB\Server\3.6\bin 切换到C:\Program Files ...
- QML与C++混合编程详解(转)
原文转自:http://blog.csdn.net/ieearth/article/details/42243553 原文转自:https://www.cnblogs.com/findumars/p/ ...