Image Processing, Analysis & and Machine Vision - A MATLAB Companion
Contents目录
- Chapter 0: Introduction to the companion book本辅导书简介
- Chapter 1: Introduction 简介
- Viewing an image: image_view_demo 查看一张图像:image_view_demo

- Chapter 2: The image, its representations and properties
- Displaying a coarse binary image: coarse_pixels_draw

- Distance transform, an example: dist_trans_demo
- Border of a region, an example: region_border_demo
- Chapter 3: The image, its mathematical and physical background
- Convolution, shift-multiply-add approach: conv_demo
- Discrete Fourier Transform: dft_edu
- Inverse DFT: idft_edu
- 1D Discrete Fourier Transform: dft1d_demo
- 2D Discrete Fourier Transform: dft2d_demo
- Basis functions for the 2D Discrete Cosine Transform: dct2base
- Principal Component Analysis: pca
- Chapter 4: Data structures for image analysis
- \MATLAB\/ data structures: structures
- Displaying image values: showim_values
- Co-occurrence matrix: cooc
- Integral image construction: integralim
- Chapter 5: Image pre-processing
- Grayscale transformation, histogram equalization: hist_equal
- Geometric transformation: imgeomt
- Smoothing using a rotating mask: rotmask
- Image sharpening by Laplacian: imsharpen
- Harris corner detector: harris
- Frequency filtering: buttfilt
- Chapter 6: Segmentation I
- Iterative threshold selection: imthresh
- Line detection using Hough transform: hough_lines
- Dynamic programming boundary tracing: dpboundary
- Region merging via boundary melting: regmerge
- Removal of small regions: remsmall
- Chapter 7: Segmentation II
- Mean shift segmentation: meanshsegm
- Active contours (snakes): snake
- Gradient vector flow snakes: mgvf
- Level sets: levelset
- Graph cut segmentation: GraphCut
- Chapter 8: Shape representation and description
- B-spline interpolation: bsplineinterp
- Convex hull construction: convexhull
- Region descriptors: regiondescr
- Boundary descriptors: boundarydescr
- Chapter 9: Object recognition
- Maximum probability classification for normal data: maxnormalclass
- Linear separability and basic classifiers: linsep_demo
- Recognition of hand-written numerals: ocr_demo
- Adaptive boosting: adaboost
- Chapter 10: Image understanding
- Random sample consensus: ransac
- Gaussian mixture model estimation: gaussianmixture
- Point distribution models: pointdistrmodel
- Active shape model fit: asmfit
- Chapter 11: 3D vision, geometry
- Homography estimation from point correspondences---DLT method: u2Hdlt
- Mathematical description of the camera: cameragen
- Visualize a camera in a 3D plot: showcams
- Decomposition of the projection matrix P: P2KRtC
- Isotropic point normalization: pointnorm
- Fundamental matrix---8-point algorithm: u2Fdlt
- 3D point reconstruction---linear method: uP2Xdlt
- Chapter 12: Use of 3D vision
- Iterative closest point matching: vtxicrp
- Chapter 13: Mathematical morphology
- Top hat transformation: tophat
- Object detection using opening: objdetect
- Sequential thinning: thinning
- Ultimate erosion: ulterosion
- Binary granulometry: granulometry
- Watershed segmentation: wshed
- Chapter 14: Image data compression
- Huffman code: huffman
- Predictive compression: dpcm
- JPEG compression pictorially, step by step: jpegcomp_demo
- Chapter 15: Texture
- Haralick texture descriptors: haralick
- Wavelet texture descriptors: waveletdescr
- Texture based segmentation: texturesegm
- L-system interpreter: lsystem
- Chapter 16: Motion analysis
- Adaptive background modeling by using a mixture of Gaussians: bckggm
- Particle filtering: particle_filtering
- Importance sampling: importance_sampling
- Kernel-based tracking: kernel_based_tracking
[Home], [Contact]
Last modified at 15:56, 28 April 2014 CEST.
关于机器视觉与机器学习的大量资源及书籍 可在线阅读:http://blog.exbot.net/archives/48
demo videos:http://visionbook.felk.cvut.cz/demos.html
Image Processing, Analysis & and Machine Vision - A MATLAB Companion的更多相关文章
- 机器视觉工具箱-Machine Vision Toolbox for Matlab
发现了一个机器视觉的Matlab工具箱,分享一下. 机器视觉工具箱(MVT的)规定,在机器视觉和基于视觉的控制有益的多种功能.这是一个有点折衷收集反映作者在光度学,摄影测量,色度学 方面的个人利益.它 ...
- How to use data analysis for machine learning (example, part 1)
In my last article, I stated that for practitioners (as opposed to theorists), the real prerequisite ...
- machine vision plan
以OpenCV+C#/C++为主,Halcon+C#/C++.LabVIEW+NI Vision,其他还不了解 目前:Halcon+C# 1.完成:测量定位,表面质量检测 2.完成1后开始:OpenC ...
- Computer Vision with Matlab
PPT: https://max.book118.com/html/2016/0325/38682623.shtm Code: http://www.pudn.com/Download/item/id ...
- books
<<learning opencv>>, 布拉德斯基 (Bradski.G.) (作者), 克勒 (Kaehler.A.) (作者), 这本书一定要第二版的,因为第二版 ...
- 机器学习、图像识别方面 书籍推荐 via zhihu
机器学习.图像识别方面 书籍推荐 作者:小涛 链接:https://www.zhihu.com/question/20523667/answer/97384340 来源:知乎 著作权归作者所有.商业转 ...
- Computer Vision Algorithm Implementations
Participate in Reproducible Research General Image Processing OpenCV (C/C++ code, BSD lic) Image man ...
- 【机器学习Machine Learning】资料大全
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...
- FAQ: Machine Learning: What and How
What: 就是将统计学算法作为理论,计算机作为工具,解决问题.statistic Algorithm. How: 如何成为菜鸟一枚? http://www.quora.com/How-can-a-b ...
随机推荐
- bzoj 2878 [Noi2012]迷失游乐园——树上的期望dp
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2878 很好的树上概率题的思路,就是分成up和down. 代码中有众多小细节.让我弃疗好几天的 ...
- Tomcat服务器下 catalina.out 日志开关
很多异常在 debug 日志里不会打印,但在 catalina.out 里会打印,比如方法调用找不到,jdk 版本不匹配等.但是打开了该日志开关又会产生一个问题,就是它会哗啦啦的不断急剧膨胀,文件太大 ...
- Qt5.4中遇到找不到头文件<QApplication>等。
从新学习Qt时,重装了Qt5.4,当运行Hello World例子时,遇到了下列的情况 <span style="font-size:18px;">#include & ...
- 把OnDraw和OnPaint弄清楚(转贴)
OnDraw()和OnPaint()兄弟 经常有朋友问雷神这样的问题:我在视图画的图象或者文字,当窗口改变后为什么不见了?OnDraw()和OnPaint()两个都是解决上面的问题,有什么不同? 雷神 ...
- 蓝桥杯 基础练习 BASIC-30 阶乘计算
基础练习 阶乘计算 时间限制:1.0s 内存限制:512.0MB 问题描述 输入一个正整数n,输出n!的值. 其中n!=1*2*3*…*n. 算法描述 n!可能很大,而计算机能表示的整数范围有 ...
- Scanner 的练习 。。。。依然不懂用法。。。苦恼
package com.b; import java.util.Random; import java.util.Scanner; public class Core { public static ...
- memcache两种客户端比较
1.memcached client for java 客户端API:memcached client for java 网址:http://www.whalin.com/memcached(我从 h ...
- Mongodb时间问题
Java保存到mongodb当前时间,使用RoboMongo查看数据显示时间比当前时间少8个小时,这是客户端的问题. MongoDB中的Date类型数据只保存绝对时间值,不保存时区信息,因此“显示的时 ...
- Javascript 推荐一个图形化展示库
觉得这个库不错: http://almende.github.io/chap-links-library/index.html
- Linux机器工作环境安装
安装gcc编译器: yum -y install gcc 安装wget: yum -y install wget 安装python-setuptools: wget http://peak.telec ...