Contents目录

  • Chapter 0: Introduction to the companion book本辅导书简介
  • Chapter 1: Introduction 简介
    • Viewing an image: image_view_demo 查看一张图像:image_view_demo

  • Chapter 2: The image, its representations and properties
    • Displaying a coarse binary image: coarse_pixels_draw

    • Distance transform, an example: dist_trans_demo
    • Border of a region, an example: region_border_demo
  • Chapter 3: The image, its mathematical and physical background
    • Convolution, shift-multiply-add approach: conv_demo
    • Discrete Fourier Transform: dft_edu
    • Inverse DFT: idft_edu
    • 1D Discrete Fourier Transform: dft1d_demo
    • 2D Discrete Fourier Transform: dft2d_demo
    • Basis functions for the 2D Discrete Cosine Transform: dct2base
    • Principal Component Analysis: pca
  • Chapter 4: Data structures for image analysis
    • \MATLAB\/ data structures: structures
    • Displaying image values: showim_values
    • Co-occurrence matrix: cooc
    • Integral image construction: integralim
  • Chapter 5: Image pre-processing
    • Grayscale transformation, histogram equalization: hist_equal
    • Geometric transformation: imgeomt
    • Smoothing using a rotating mask: rotmask
    • Image sharpening by Laplacian: imsharpen
    • Harris corner detector: harris
    • Frequency filtering: buttfilt
  • Chapter 6: Segmentation I
    • Iterative threshold selection: imthresh
    • Line detection using Hough transform: hough_lines
    • Dynamic programming boundary tracing: dpboundary
    • Region merging via boundary melting: regmerge
    • Removal of small regions: remsmall
  • Chapter 7: Segmentation II
    • Mean shift segmentation: meanshsegm
    • Active contours (snakes): snake
    • Gradient vector flow snakes: mgvf
    • Level sets: levelset
    • Graph cut segmentation: GraphCut
  • Chapter 8: Shape representation and description
    • B-spline interpolation: bsplineinterp
    • Convex hull construction: convexhull
    • Region descriptors: regiondescr
    • Boundary descriptors: boundarydescr
  • Chapter 9: Object recognition
    • Maximum probability classification for normal data: maxnormalclass
    • Linear separability and basic classifiers: linsep_demo
    • Recognition of hand-written numerals: ocr_demo
    • Adaptive boosting: adaboost
  • Chapter 10: Image understanding
    • Random sample consensus: ransac
    • Gaussian mixture model estimation: gaussianmixture
    • Point distribution models: pointdistrmodel
    • Active shape model fit: asmfit
  • Chapter 11: 3D vision, geometry
    • Homography estimation from point correspondences---DLT method: u2Hdlt
    • Mathematical description of the camera: cameragen
    • Visualize a camera in a 3D plot: showcams
    • Decomposition of the projection matrix P: P2KRtC
    • Isotropic point normalization: pointnorm
    • Fundamental matrix---8-point algorithm: u2Fdlt
    • 3D point reconstruction---linear method: uP2Xdlt
  • Chapter 12: Use of 3D vision
    • Iterative closest point matching: vtxicrp
  • Chapter 13: Mathematical morphology
    • Top hat transformation: tophat
    • Object detection using opening: objdetect
    • Sequential thinning: thinning
    • Ultimate erosion: ulterosion
    • Binary granulometry: granulometry
    • Watershed segmentation: wshed
  • Chapter 14: Image data compression
    • Huffman code: huffman
    • Predictive compression: dpcm
    • JPEG compression pictorially, step by step: jpegcomp_demo
  • Chapter 15: Texture
    • Haralick texture descriptors: haralick
    • Wavelet texture descriptors: waveletdescr
    • Texture based segmentation: texturesegm
    • L-system interpreter: lsystem
  • Chapter 16: Motion analysis
    • Adaptive background modeling by using a mixture of Gaussians: bckggm
    • Particle filtering: particle_filtering
    • Importance sampling: importance_sampling
    • Kernel-based tracking: kernel_based_tracking

[Home][Contact]
Last modified at 15:56, 28 April 2014 CEST.

关于机器视觉与机器学习的大量资源及书籍 可在线阅读:http://blog.exbot.net/archives/48

demo videos:http://visionbook.felk.cvut.cz/demos.html

Image Processing, Analysis & and Machine Vision - A MATLAB Companion的更多相关文章

  1. 机器视觉工具箱-Machine Vision Toolbox for Matlab

    发现了一个机器视觉的Matlab工具箱,分享一下. 机器视觉工具箱(MVT的)规定,在机器视觉和基于视觉的控制有益的多种功能.这是一个有点折衷收集反映作者在光度学,摄影测量,色度学 方面的个人利益.它 ...

  2. How to use data analysis for machine learning (example, part 1)

    In my last article, I stated that for practitioners (as opposed to theorists), the real prerequisite ...

  3. machine vision plan

    以OpenCV+C#/C++为主,Halcon+C#/C++.LabVIEW+NI Vision,其他还不了解 目前:Halcon+C# 1.完成:测量定位,表面质量检测 2.完成1后开始:OpenC ...

  4. Computer Vision with Matlab

    PPT: https://max.book118.com/html/2016/0325/38682623.shtm Code: http://www.pudn.com/Download/item/id ...

  5. books

    <<learning opencv>>,   布拉德斯基 (Bradski.G.) (作者), 克勒 (Kaehler.A.) (作者),   这本书一定要第二版的,因为第二版 ...

  6. 机器学习、图像识别方面 书籍推荐 via zhihu

    机器学习.图像识别方面 书籍推荐 作者:小涛 链接:https://www.zhihu.com/question/20523667/answer/97384340 来源:知乎 著作权归作者所有.商业转 ...

  7. Computer Vision Algorithm Implementations

    Participate in Reproducible Research General Image Processing OpenCV (C/C++ code, BSD lic) Image man ...

  8. 【机器学习Machine Learning】资料大全

    昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...

  9. FAQ: Machine Learning: What and How

    What: 就是将统计学算法作为理论,计算机作为工具,解决问题.statistic Algorithm. How: 如何成为菜鸟一枚? http://www.quora.com/How-can-a-b ...

随机推荐

  1. bzoj 2878 [Noi2012]迷失游乐园——树上的期望dp

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2878 很好的树上概率题的思路,就是分成up和down. 代码中有众多小细节.让我弃疗好几天的 ...

  2. Tomcat服务器下 catalina.out 日志开关

    很多异常在 debug 日志里不会打印,但在 catalina.out 里会打印,比如方法调用找不到,jdk 版本不匹配等.但是打开了该日志开关又会产生一个问题,就是它会哗啦啦的不断急剧膨胀,文件太大 ...

  3. Qt5.4中遇到找不到头文件<QApplication>等。

    从新学习Qt时,重装了Qt5.4,当运行Hello World例子时,遇到了下列的情况 <span style="font-size:18px;">#include & ...

  4. 把OnDraw和OnPaint弄清楚(转贴)

    OnDraw()和OnPaint()兄弟 经常有朋友问雷神这样的问题:我在视图画的图象或者文字,当窗口改变后为什么不见了?OnDraw()和OnPaint()两个都是解决上面的问题,有什么不同? 雷神 ...

  5. 蓝桥杯 基础练习 BASIC-30 阶乘计算

    基础练习 阶乘计算   时间限制:1.0s   内存限制:512.0MB 问题描述 输入一个正整数n,输出n!的值. 其中n!=1*2*3*…*n. 算法描述 n!可能很大,而计算机能表示的整数范围有 ...

  6. Scanner 的练习 。。。。依然不懂用法。。。苦恼

    package com.b; import java.util.Random; import java.util.Scanner; public class Core { public static ...

  7. memcache两种客户端比较

    1.memcached client for java 客户端API:memcached client for java 网址:http://www.whalin.com/memcached(我从 h ...

  8. Mongodb时间问题

    Java保存到mongodb当前时间,使用RoboMongo查看数据显示时间比当前时间少8个小时,这是客户端的问题. MongoDB中的Date类型数据只保存绝对时间值,不保存时区信息,因此“显示的时 ...

  9. Javascript 推荐一个图形化展示库

    觉得这个库不错: http://almende.github.io/chap-links-library/index.html

  10. Linux机器工作环境安装

    安装gcc编译器: yum -y install gcc 安装wget: yum -y install wget 安装python-setuptools: wget http://peak.telec ...