Contents目录

  • Chapter 0: Introduction to the companion book本辅导书简介
  • Chapter 1: Introduction 简介
    • Viewing an image: image_view_demo 查看一张图像:image_view_demo

  • Chapter 2: The image, its representations and properties
    • Displaying a coarse binary image: coarse_pixels_draw

    • Distance transform, an example: dist_trans_demo
    • Border of a region, an example: region_border_demo
  • Chapter 3: The image, its mathematical and physical background
    • Convolution, shift-multiply-add approach: conv_demo
    • Discrete Fourier Transform: dft_edu
    • Inverse DFT: idft_edu
    • 1D Discrete Fourier Transform: dft1d_demo
    • 2D Discrete Fourier Transform: dft2d_demo
    • Basis functions for the 2D Discrete Cosine Transform: dct2base
    • Principal Component Analysis: pca
  • Chapter 4: Data structures for image analysis
    • \MATLAB\/ data structures: structures
    • Displaying image values: showim_values
    • Co-occurrence matrix: cooc
    • Integral image construction: integralim
  • Chapter 5: Image pre-processing
    • Grayscale transformation, histogram equalization: hist_equal
    • Geometric transformation: imgeomt
    • Smoothing using a rotating mask: rotmask
    • Image sharpening by Laplacian: imsharpen
    • Harris corner detector: harris
    • Frequency filtering: buttfilt
  • Chapter 6: Segmentation I
    • Iterative threshold selection: imthresh
    • Line detection using Hough transform: hough_lines
    • Dynamic programming boundary tracing: dpboundary
    • Region merging via boundary melting: regmerge
    • Removal of small regions: remsmall
  • Chapter 7: Segmentation II
    • Mean shift segmentation: meanshsegm
    • Active contours (snakes): snake
    • Gradient vector flow snakes: mgvf
    • Level sets: levelset
    • Graph cut segmentation: GraphCut
  • Chapter 8: Shape representation and description
    • B-spline interpolation: bsplineinterp
    • Convex hull construction: convexhull
    • Region descriptors: regiondescr
    • Boundary descriptors: boundarydescr
  • Chapter 9: Object recognition
    • Maximum probability classification for normal data: maxnormalclass
    • Linear separability and basic classifiers: linsep_demo
    • Recognition of hand-written numerals: ocr_demo
    • Adaptive boosting: adaboost
  • Chapter 10: Image understanding
    • Random sample consensus: ransac
    • Gaussian mixture model estimation: gaussianmixture
    • Point distribution models: pointdistrmodel
    • Active shape model fit: asmfit
  • Chapter 11: 3D vision, geometry
    • Homography estimation from point correspondences---DLT method: u2Hdlt
    • Mathematical description of the camera: cameragen
    • Visualize a camera in a 3D plot: showcams
    • Decomposition of the projection matrix P: P2KRtC
    • Isotropic point normalization: pointnorm
    • Fundamental matrix---8-point algorithm: u2Fdlt
    • 3D point reconstruction---linear method: uP2Xdlt
  • Chapter 12: Use of 3D vision
    • Iterative closest point matching: vtxicrp
  • Chapter 13: Mathematical morphology
    • Top hat transformation: tophat
    • Object detection using opening: objdetect
    • Sequential thinning: thinning
    • Ultimate erosion: ulterosion
    • Binary granulometry: granulometry
    • Watershed segmentation: wshed
  • Chapter 14: Image data compression
    • Huffman code: huffman
    • Predictive compression: dpcm
    • JPEG compression pictorially, step by step: jpegcomp_demo
  • Chapter 15: Texture
    • Haralick texture descriptors: haralick
    • Wavelet texture descriptors: waveletdescr
    • Texture based segmentation: texturesegm
    • L-system interpreter: lsystem
  • Chapter 16: Motion analysis
    • Adaptive background modeling by using a mixture of Gaussians: bckggm
    • Particle filtering: particle_filtering
    • Importance sampling: importance_sampling
    • Kernel-based tracking: kernel_based_tracking

[Home][Contact]
Last modified at 15:56, 28 April 2014 CEST.

关于机器视觉与机器学习的大量资源及书籍 可在线阅读:http://blog.exbot.net/archives/48

demo videos:http://visionbook.felk.cvut.cz/demos.html

Image Processing, Analysis & and Machine Vision - A MATLAB Companion的更多相关文章

  1. 机器视觉工具箱-Machine Vision Toolbox for Matlab

    发现了一个机器视觉的Matlab工具箱,分享一下. 机器视觉工具箱(MVT的)规定,在机器视觉和基于视觉的控制有益的多种功能.这是一个有点折衷收集反映作者在光度学,摄影测量,色度学 方面的个人利益.它 ...

  2. How to use data analysis for machine learning (example, part 1)

    In my last article, I stated that for practitioners (as opposed to theorists), the real prerequisite ...

  3. machine vision plan

    以OpenCV+C#/C++为主,Halcon+C#/C++.LabVIEW+NI Vision,其他还不了解 目前:Halcon+C# 1.完成:测量定位,表面质量检测 2.完成1后开始:OpenC ...

  4. Computer Vision with Matlab

    PPT: https://max.book118.com/html/2016/0325/38682623.shtm Code: http://www.pudn.com/Download/item/id ...

  5. books

    <<learning opencv>>,   布拉德斯基 (Bradski.G.) (作者), 克勒 (Kaehler.A.) (作者),   这本书一定要第二版的,因为第二版 ...

  6. 机器学习、图像识别方面 书籍推荐 via zhihu

    机器学习.图像识别方面 书籍推荐 作者:小涛 链接:https://www.zhihu.com/question/20523667/answer/97384340 来源:知乎 著作权归作者所有.商业转 ...

  7. Computer Vision Algorithm Implementations

    Participate in Reproducible Research General Image Processing OpenCV (C/C++ code, BSD lic) Image man ...

  8. 【机器学习Machine Learning】资料大全

    昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...

  9. FAQ: Machine Learning: What and How

    What: 就是将统计学算法作为理论,计算机作为工具,解决问题.statistic Algorithm. How: 如何成为菜鸟一枚? http://www.quora.com/How-can-a-b ...

随机推荐

  1. RAC修改数据库的spfile位置

    RAC修改spfile位置 [root@rac1 ~]# su - oracle [oracle@rac1 ~]$ sqlplus  / as sysdba SQL*Plus: Release 11. ...

  2. eclipse 中xml文件的字体改不了

    XML Editor的改不了. 修改colors & fonts里的eclipse中打开window->prefece->generation-basic 下 Text Edito ...

  3. jq添加和移除事件的方法,prop和attr

    会在写条件判断的时候遇到,今天在判断没有剩余产品的时候,移除事件.当有产品的时候添加事件: 移除onClick事件: $("a").removeAttr("onclick ...

  4. Swift app中的Crash捕获与处理

    1. 为什么会Crash 常见的Crash原因有:访问已经被释放的内存,数组越界,使用!解包值为nil的变量.当遇到这些情况时,说明应用已经遇到了很严重的非预期错误,无法再继续运行.操作系统检测到这些 ...

  5. android httpclient 设置超时

    3.X是这样的 HttpClient httpClient=new DefaultHttpClient();4.3是这样的CloseableHttpClient httpClient = HttpCl ...

  6. 网络监控之一:netstat命令

    netstat命令用于显示与IP.TCP.UDP和ICMP协议相关的统计数据,一般用于检验本机各端口的网络连接情况.netstat是在内核中访问网络及相关信息的程序,它能提供TCP连接,TCP和UDP ...

  7. Py修行路 python基础 (十四)递归 及 面向对象初识及编程思想

    一.递归 1.定义: 在函数内部,可以调用其他函数.如果一个函数在内部调用自身本身,这个函数就是递归函数. (1)递归就是在过程或函数里调用自身: (2)在使用递归策略时,必须有一个明确的递归结束条件 ...

  8. windows提权辅助工具koadic

    项目地址:https://github.com/zerosum0x0/koadic ┌─[root@sch01ar]─[/sch01ar] └──╼ #git clone https://github ...

  9. java成神之——线程操作

    线程 Future CountDownLatch Multithreading synchronized Thread Producer-Consumer 获取线程状态 线程池 ThreadLocal ...

  10. windows重启mysql命令

    开始->运行->cmd 停止:net stop mysql 启动:net start mysql 前提MYSQL已经安装为windows服务