题目描述

给定一张 \(n\) 个点 \(m\) 条边的无向图,每条边连接两个顶点,保证无重边自环,不保证连通。

你想在这张图上进行若干次旅游,每次旅游可以任选一个点 \(x\) 作为起点,再走到一个与 \(x\) 直接有边相连的点 \(y\),再走到一个与 \(y\) 直接有边相连的点 \(z\) 并结束本次旅游。

作为一个旅游爱好者,你不希望经过任意一条边超过一次,注意一条边不能即正向走一次又反向走一次,注意点可以经过多次,在满足此条件下,你希望进行尽可能多次的旅游,请计算出最多能进行的旅游次数并输出任意一种方案。

输入输出格式

输入格式

第 \(1\) 行两个正整数 \(n\) 与 \(m\),表示全图的点数与边数

下接 \(m\) 行,每行两个数字 \(u\) 与 \(v\) 表示一条边

输出格式

第 \(1\) 行一个整数 \(cnt\) 表示答案

下接 \(cnt\) 行,每行三个数字 \(x, y\) 与 \(z\),表示一次旅游的路线

如有多种旅行方案,任意输出一种即可

说明

对于前 \(20\%\) 的数据, \(n \le10, m \le 20\).

对于另 \(20\%\) 的数据, \(m = n - 1\),并且图连通

对于另 \(10\%\) 的数据,每个点的度数不超过 \(2\)

对于 \(100\%\) 的数据, \(n \le 100000, m \le 200000\)


可能还是没怎么做过构造题目吧,我打的树的特殊数据分其实改一改就是正解了。

通过手玩我们发现对一个有\(m\)条边的连通块来说,方案数量一定可以构造到\(\lfloor\frac{m}{2}\rfloor\)个。

构造方法如下

对某个连通块随便选择一个点构造一颗搜索树,在回溯的时候配对可以连接的边,如果不能两两配对,那么用上自己头上的边。

考虑为什么这样是对的,思路很简单。我们发现除了选定根的某个儿子边,所有的边都可以用上,不会产生浪费。


Code:

#include <cstdio>
#include <vector>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define Rep(i,a,b) for(int i=a;i<b;i++)
#define ed() for(int i=head[now];i;i=Next[i])
#define pb(a) push_back(a)
const int N=2e5+10;
int head[N],to[N<<1],Next[N<<1],cnt=1;
void add(int u,int v)
{
to[++cnt]=v,Next[cnt]=head[u],head[u]=cnt;
}
int used[N<<1],ans[N<<2],n,m,tot,vis[N];
void dfs(int now,int fa,int edg)
{
vis[now]=1;
std::vector <int> ch;
ed()
{
int v=to[i];
if(v!=fa&&!vis[v]) dfs(v,now,i);
}
ed()
{
int v=to[i];
if(v!=fa&&!used[i])
{
ch.pb(i);
used[i^1]=1;
}
}
Rep(i,0,ch.size())
{
if(i&1) ans[++tot]=now;
ans[++tot]=to[ch[i]];
}
if(ch.size()&1)
{
if(fa) ans[++tot]=now,ans[++tot]=fa,used[edg]=1;
else tot--;
}
}
int main()
{
scanf("%d%d",&n,&m);
int u,v;
rep(i,1,m) scanf("%d%d",&u,&v),add(u,v),add(v,u);
rep(i,1,n) if(!vis[i]) dfs(i,0,0);
printf("%d\n",tot/3);
rep(i,1,tot)
{
printf("%d ",ans[i]);
if(i%3==0) printf("\n");
}
return 0;
}

2018.10.25

CF858F Wizard's Tour 解题报告的更多相关文章

  1. 洛谷 P2747 [USACO5.4]周游加拿大Canada Tour 解题报告

    P2747 [USACO5.4]周游加拿大Canada Tour 题目描述 你赢得了一场航空公司举办的比赛,奖品是一张加拿大环游机票.旅行在这家航空公司开放的最西边的城市开始,然后一直自西向东旅行,直 ...

  2. CF858F Wizard's Tour

    也许更好的阅读体验 \(\mathcal{Description}\) 给定一张 \(n\) 个点 \(m\) 条边的无向图,每条边连接两个顶点,保证无重边自环,不保证连通. 你想在这张图上进行若干次 ...

  3. CH Round #56 - 国庆节欢乐赛解题报告

    最近CH上的比赛很多,在此会全部写出解题报告,与大家交流一下解题方法与技巧. T1 魔幻森林 描述 Cortana来到了一片魔幻森林,这片森林可以被视作一个N*M的矩阵,矩阵中的每个位置上都长着一棵树 ...

  4. 二模13day1解题报告

    二模13day1解题报告 T1.发射站(station) N个发射站,每个发射站有高度hi,发射信号强度vi,每个发射站的信号只会被左和右第一个比他高的收到.现在求收到信号最强的发射站. 我用了时间复 ...

  5. BZOJ 1051 最受欢迎的牛 解题报告

    题目直接摆在这里! 1051: [HAOI2006]受欢迎的牛 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4438  Solved: 2353[S ...

  6. 习题:codevs 2822 爱在心中 解题报告

    这次的解题报告是有关tarjan算法的一道思维量比较大的题目(真的是原创文章,希望管理员不要再把文章移出首页). 这道题蒟蒻以前做过,但是今天由于要复习tarjan算法,于是就看到codevs分类强联 ...

  7. 习题:codevs 1035 火车停留解题报告

    本蒟蒻又来写解题报告了.这次的题目是codevs 1035 火车停留. 题目大意就是给m个火车的到达时间.停留时间和车载货物的价值,车站有n个车道,而火车停留一次车站就会从车载货物价值中获得1%的利润 ...

  8. 习题: codevs 2492 上帝造题的七分钟2 解题报告

    这道题是受到大犇MagHSK的启发我才得以想出来的,蒟蒻觉得自己的代码跟MagHSK大犇的代码完全比不上,所以这里蒟蒻就套用了MagHSK大犇的代码(大家可以关注下我的博客,友情链接就是大犇MagHS ...

  9. 习题:codevs 1519 过路费 解题报告

    今天拿了这道题目练练手,感觉自己代码能力又增强了不少: 我的思路跟别人可能不一样. 首先我们很容易就能看出,我们需要的边就是最小生成树算法kruskal算法求出来的边,其余的边都可以删掉,于是就有了这 ...

随机推荐

  1. Mysqldump自定义导出n条记录

    很多时候DBA需要导出部分记录至开发.测试环境,因数据量需求较小,如果原库的记录多,且表数量也多,在用mysqldump命令导出时可以添加一个where参数,自定义导出n条记录,而不必全量导出. 示例 ...

  2. ECSHOP和SHOPEX快递单号查询中通插件V8.6专版

    发布ECSHOP说明: ECSHOP快递物流单号查询插件特色 本ECSHOP快递物流单号跟踪插件提供国内外近2000家快递物流订单单号查询服务例如申通快递.顺丰快递.圆通快递.EMS快递.汇通快递.宅 ...

  3. video.js使用技巧

    https://www.awaimai.com/2053.html https://www.jianshu.com/p/16fa00a1ca8e

  4. vm 中 centOS 7 固定ip设置

    虚拟机中,centOS通过NAT连接,设置固定IP上网. 本地主机 VMware Network Adapter VMnet8  状态信息: 描述: VMware Virtual Ethernet A ...

  5. REPLACE(替换字段内容)

    语法: REPLACE <str1> WITH <str2> INTO <c> [LENGTH <l> ]. ABAP/4 搜索字段 <c> ...

  6. Java线程和多线程(九)——死锁

    Java中的死锁指的就是一种多于两个线程永远阻塞的特殊状况.Java中的死锁状态至少需要多于两个线程以及资源的时候才会产生.这里,我写了一个产生死锁的程序,并且讲下如何分析死锁. 首先来看一下产生死锁 ...

  7. 初步学习pg_control文件之八

    接前文  初步学习pg_control文件之七  继续 看:catalog_version_no 代码如下: static void WriteControlFile(void) { ... /* * ...

  8. 521. [NOIP2010] 引水入城 cogs

    521. [NOIP2010] 引水入城 ★★★   输入文件:flow.in   输出文件:flow.out   简单对比时间限制:1 s   内存限制:128 MB 在一个遥远的国度,一侧是风景秀 ...

  9. 虚拟现实-VR-UE4-编译源代码后,无法运行

    情况是这个样,在一开始我编译后,是可以运行,但是当我重新做系统后,再次运行时,每次都是到加载的18%的时候提示了如下错误 具体解决方法还没有找到,正在努力找中.........,会后续更新 同时希望有 ...

  10. iFIERO - (二)宇宙大战 Space Battle -- SpriteKit 无限循环背景Endless、SpriteKit物理碰撞、CoreMotion加速计

    本节主要讲解如何创建无限循环Endless的星空背景(如下图).玩家飞船发射子弹,监测子弹击外星敌机的SpriteKit物理碰撞并消灭敌机,以及应用iOS的CoreMotion加速计移动飞船躲避外星敌 ...