In the world of Dota2, there are two parties: the Radiant and the Dire.

The Dota2 senate consists of senators coming from two parties. Now the senate wants to make a decision about a change in the Dota2 game. The voting for this change is a round-based procedure. In each round, each senator can exercise one of the two rights:

  1. Ban one senator's right
    A senator can make another senator lose all his rights in this and all the following rounds.
  2. Announce the victory
    If this senator found the senators who still have rights to vote are all from the same party, he can announce the victory and make the decision about the change in the game.

Given a string representing each senator's party belonging. The character 'R' and 'D' represent the Radiant party and the Dire party respectively. Then if there are n senators, the size of the given string will be n.

The round-based procedure starts from the first senator to the last senator in the given order. This procedure will last until the end of voting. All the senators who have lost their rights will be skipped during the procedure.

Suppose every senator is smart enough and will play the best strategy for his own party, you need to predict which party will finally announce the victory and make the change in the Dota2 game. The output should be Radiant or Dire.

Example 1:

Input: "RD"
Output: "Radiant"
Explanation: The first senator comes from Radiant and he can just ban the next senator's right in the round 1.
And the second senator can't exercise any rights any more since his right has been banned.
And in the round 2, the first senator can just announce the victory since he is the only guy in the senate who can vote.

Example 2:

Input: "RDD"
Output: "Dire"
Explanation:
The first senator comes from Radiant and he can just ban the next senator's right in the round 1.
And the second senator can't exercise any rights anymore since his right has been banned.
And the third senator comes from Dire and he can ban the first senator's right in the round 1.
And in the round 2, the third senator can just announce the victory since he is the only guy in the senate who can vote.

Note:

  1. The length of the given string will in the range [1, 10,000].
 

Approach #1: C++.

class Solution {
public:
string predictPartyVictory(string senate) {
int len = senate.length();
queue<int> q1, q2;
for (int i = 0; i < len; ++i)
senate[i] == 'R' ? q1.push(i) : q2.push(i);
while (!q1.empty() && !q2.empty()) {
int r_index = q1.front();
int d_index = q2.front();
q1.pop(), q2.pop();
r_index < d_index ? q1.push(r_index + len) : q2.push(d_index + len);
}
return q1.size() > q2.size() ? "Radiant" : "Dire";
}
};

  

Analysis;

we use two queue to maintion the index of 'R' and 'D' in the senate. In every loop we compare the two front elements in these queue. we push the little one add len into the original queue because he can vote in the next round. If one of the queue is empty we compare the size of these queue, and return the answar.

649. Dota2 Senate的更多相关文章

  1. 【LeetCode】649. Dota2 Senate 解题报告(Python)

    [LeetCode]649. Dota2 Senate 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地 ...

  2. Java实现 LeetCode 649 Dota2 参议院(暴力大法)

    649. Dota2 参议院 Dota2 的世界里有两个阵营:Radiant(天辉)和 Dire(夜魇) Dota2 参议院由来自两派的参议员组成.现在参议院希望对一个 Dota2 游戏里的改变作出决 ...

  3. [LeetCode] Dota2 Senate 刀塔二参议院

    In the world of Dota2, there are two parties: the Radiant and the Dire. The Dota2 senate consists of ...

  4. [Swift]LeetCode649. Dota2 参议院 | Dota2 Senate

    In the world of Dota2, there are two parties: the Radiantand the Dire. The Dota2 senate consists of ...

  5. Leetcode 649.Dota2参议院

    Dota2参议院 Dota2 的世界里有两个阵营:Radiant(天辉)和 Dire(夜魇) Dota2 参议院由来自两派的参议员组成.现在参议院希望对一个 Dota2 游戏里的改变作出决定.他们以一 ...

  6. 【力扣】649. Dota2 参议院

    Dota2 的世界里有两个阵营:Radiant(天辉)和 Dire(夜魇) Dota2 参议院由来自两派的参议员组成.现在参议院希望对一个 Dota2 游戏里的改变作出决定.他们以一个基于轮为过程的投 ...

  7. LeetCode All in One题解汇总(持续更新中...)

    突然很想刷刷题,LeetCode是一个不错的选择,忽略了输入输出,更好的突出了算法,省去了不少时间. dalao们发现了任何错误,或是代码无法通过,或是有更好的解法,或是有任何疑问和建议的话,可以在对 ...

  8. 算法与数据结构基础 - 贪心(Greedy)

    贪心基础 贪心(Greedy)常用于解决最优问题,以期通过某种策略获得一系列局部最优解.从而求得整体最优解. 贪心从局部最优角度考虑,只适用于具备无后效性的问题,即某个状态以前的过程不影响以后的状态. ...

  9. leetcode 学习心得 (4)

    645. Set Mismatch The set S originally contains numbers from 1 to n. But unfortunately, due to the d ...

随机推荐

  1. jQuery笔记——DOM操作

    在 JavaScript 中,DOM 不但内容庞大繁杂,而且我们开发的过程中需要考虑更多的兼容性.扩展性.在 jQuery 中,已经将最常用的 DOM 操 作方法进行了有效封装,并且不需要考虑浏览器的 ...

  2. 前端学习---html基础知识

    HTML基本知识 学习html首先我们先看看HTML本质: web框架本质 我们在学socket,我们创建一个socketserver,然后运行起来,有一个client客户端要连接socket服务端, ...

  3. 清除stoped impdp/expdp job的方法

    stoped impdp/expdp job会在dba_datapump_jobs中留下一条记录,显示为not running. 清除stopped job分两种情况: 1) job能够attach ...

  4. 15-EasyNetQ之对延迟消息插件的支持

    RabbitMQ延迟消息插件仍然在实验阶段.你使用这个功能要自担风险. RabbitMQ延迟消息插件为RabbitMQ增加了新的交换机类型,允许延时消息投递. EasyNetQ为交换机通过定义一种新的 ...

  5. 求输出和为n的所有连续自然数序列

    这是编程之美中的一道题.编程之美中的题目是这样的: 1+2=3 4+5=9 2+3+4=9 等式的左边都是两个或者两个以上的连续自然数相加,那么是不是所有的整数都可以写成这样的形式? 问题1:写个程序 ...

  6. Django----配置数据库读写分离

    Django配置数据库读写分离 https://blog.csdn.net/Ayhan_huang/article/details/78784486 https://blog.csdn.net/ayh ...

  7. Ubuntu 14.04 安装配置强大的星际译王(stardict)词典

    转载http://blog.csdn.net/huyisu/article/details/53437931

  8. 第十八课 Gazebo仿真器

    1.Gazebo概述 在Gazebo中的模拟效果是非常好的. 它的特性 Dynamics Simulation 直接控制物理引擎参数 Building Editor 无需代码即可在Gazebo中创建机 ...

  9. Web API集成Azure AD认证

    1.声明的介绍 基于角色的授权管理,适用于角色变化不大,并且用户权限不会频繁更改的场景. 在更复杂的环境下,仅仅通过给用户分配角色并不能有效地控制用户访问权限. 基于声明的授权有许多好处,它使认证和授 ...

  10. Java 错误结果Throw/Throws

    目录 java处理异常方式    throw的作用    throws的作用    方法原理    举例    总结 个人实例 1.java处理异常方式 在java代码中如果发生异常的话,jvm会抛出 ...