Genealogical tree

Time Limit: 1000MS Memory Limit: 65536K

Total Submissions: 7101 Accepted: 4585 Special Judge

Description

The system of Martians' blood relations is confusing enough. Actually, Martians bud when they want and where they want. They gather together in different groups, so that a Martian can have one parent as well as ten. Nobody will be surprised by a hundred of children. Martians have got used to this and their style of life seems to them natural.

And in the Planetary Council the confusing genealogical system leads to some embarrassment. There meet the worthiest of Martians, and therefore in order to offend nobody in all of the discussions it is used first to give the floor to the old Martians, than to the younger ones and only than to the most young childless assessors. However, the maintenance of this order really is not a trivial task. Not always Martian knows all of his parents (and there's nothing to tell about his grandparents!). But if by a mistake first speak a grandson and only than his young appearing great-grandfather, this is a real scandal.

Your task is to write a program, which would define once and for all, an order that would guarantee that every member of the Council takes the floor earlier than each of his descendants.

Input

The first line of the standard input contains an only number N, 1 <= N <= 100 — a number of members of the Martian Planetary Council. According to the centuries-old tradition members of the Council are enumerated with the natural numbers from 1 up to N. Further, there are exactly N lines, moreover, the I-th line contains a list of I-th member's children. The list of children is a sequence of serial numbers of children in a arbitrary order separated by spaces. The list of children may be empty. The list (even if it is empty) ends with 0.

Output

The standard output should contain in its only line a sequence of speakers' numbers, separated by spaces. If several sequences satisfy the conditions of the problem, you are to write to the standard output any of them. At least one such sequence always exists.

Sample Input

5

0

4 5 1 0

1 0

5 3 0

3 0

Sample Output

2 4 5 3 1

Source

Ural State University Internal Contest October'2000 Junior Session

【代码】:

#include<cstdio>
#include<string>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<cstring>
#include<set>
#include<queue>
#include<algorithm>
#include<vector>
#include<map>
#include<cctype>
#include<stack>
#include<sstream>
#include<list>
#include<assert.h>
#include<bitset>
#include<numeric>
#define debug() puts("++++")
#define gcd(a,b) __gcd(a,b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a,b,sizeof(a))
#define sz size()
#define be begin()
#define pu push_up
#define pd push_down
#define cl clear()
#define lowbit(x) -x&x
#define all 1,n,1
#define rep(i,n,x) for(int i=(x); i<(n); i++)
#define in freopen("in.in","r",stdin)
#define out freopen("out.out","w",stdout)
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e18;
const int maxn = 1e5 + 20;
const int maxm = 1e6 + 10;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int dx[] = {-1,1,0,0,1,1,-1,-1};
const int dy[] = {0,0,1,-1,1,-1,1,-1};
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; int n,m,num,ok; vector<int> G[maxn];
int ans[maxn];
queue<int> q;
char s[10];
int inDeg[maxn],x; int topSort()
{
int num=0;
while(!q.empty()) q.pop();
for(int i=1;i<=n;i++) if(!inDeg[i]) q.push(i);
while(!q.empty())
{
int now = q.front();
q.pop();
ans[++num]=now; //记录路径
for(int i=0; i<G[now].size(); i++)
{
int nxt = G[now][i];
if(--inDeg[nxt] == 0) q.push(nxt);
}
}
} int main()
{ while(~scanf("%d",&n))
{
ms(inDeg,0);
ms(ans,0);
for(int i=1;i<=n;i++) G[i].clear();
for(int i=1;i<=n;i++)
{
while(1)
{
scanf("%d",&x);
if(x==0) break;
G[i].push_back(x);
inDeg[x]++;
}
}
topSort();
for(int i=1;i<=n-1;i++) //1开头
cout<<ans[i]<<' ';
cout<<ans[n]<<endl;
}
return 0;
}

POJ 2367 Genealogical tree【拓扑排序/记录路径】的更多相关文章

  1. POJ 2367 Genealogical tree 拓扑排序入门题

    Genealogical tree Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8003   Accepted: 5184 ...

  2. Poj 2367 Genealogical tree(拓扑排序)

    题目:火星人的血缘关系,简单拓扑排序.很久没用邻接表了,这里复习一下. import java.util.Scanner; class edge { int val; edge next; } pub ...

  3. POJ 2367 Genealogical tree 拓扑题解

    一条标准的拓扑题解. 我这里的做法就是: 保存单亲节点作为邻接表的邻接点,这样就非常方便能够查找到那些点是没有单亲的节点,那么就能够输出该节点了. 详细实现的方法有非常多种的,比方记录每一个节点的入度 ...

  4. poj 2367 Genealogical tree

    题目连接 http://poj.org/problem?id=2367 Genealogical tree Description The system of Martians' blood rela ...

  5. 图论之拓扑排序 poj 2367 Genealogical tree

    题目链接 http://poj.org/problem?id=2367 题意就是给定一系列关系,按这些关系拓扑排序. #include<cstdio> #include<cstrin ...

  6. poj 2367 Genealogical tree (拓扑排序)

    火星人的血缘关系很奇怪,一个人可以有很多父亲,当然一个人也可以有很多孩子.有些时候分不清辈分会产生一些尴尬.所以写个程序来让n个人排序,长辈排在晚辈前面. 输入:N 代表n个人 1~n 接下来n行 第 ...

  7. poj 2367 Genealogical tree【拓扑排序输出可行解】

    Genealogical tree Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3674   Accepted: 2445 ...

  8. POJ 2367 Genealogical tree【拓扑排序】

    题意:大概意思是--有一个家族聚集在一起,现在由家族里面的人讲话,辈分高的人先讲话.现在给出n,然后再给出n行数 第i行输入的数表示的意思是第i行的子孙是哪些数,然后这些数排在i的后面. 比如样例 5 ...

  9. POJ 2367 (裸拓扑排序)

    http://poj.org/problem?id=2367 题意:给你n个数,从第一个数到第n个数,每一行的数字代表排在这个行数的后面的数字,直到0. 这是一个特别裸的拓扑排序的一个题目,拓扑排序我 ...

随机推荐

  1. P2127 序列排序

    题目描述 小C有一个N个数的整数序列,这个序列的中的数两两不同.小C每次可以交换序列中的任意两个数,代价为这两个数之和.小C希望将整个序列升序排序,问小C需要的最小代价是多少? 输入输出格式 输入格式 ...

  2. JavaScript的lazyload延迟加载是如何实现的

    懒加载技术(简称lazyload)并不是新技术, 它是js程序员对网页性能优化的一种方案.lazyload的核心是按需加载.在大型网站中都有lazyload的身影,例如谷歌的图片搜索页,迅雷首页,淘宝 ...

  3. 定时导出用户数据(expdp,impdp)

    一 定时导出数据: #!/bin/bash############################################################################### ...

  4. MFC 对话框透明效果

    网上找的资料自己改了改,在这里记录和分享一下,主要是TransparentWnd函数. 在子类的OnShowWindow函数中调用 ShowWindowAlpha() #pragma once tem ...

  5. php模板引擎smarty

    一. smarty的特点 速度:相对于其他模板引擎,速度较快 编译型:在下次访问模板时直接访问编译文件,不再进行模板重新编译 缓存技术:可以将用户最终看到的HTML文件缓存成一个静态HTML 插件技术 ...

  6. shell正则表达式(1)

    一.什么是正则 正则就是用一些具有特殊含义的符号组合到一起(称为正则表达式)来描述字符或者字符串的方法.或者说:正则就是用来描述一类事物的规则. 二.grep 1.参数 -n  :显示行号 -o  : ...

  7. RPC-整体概念

    RPC概述 RPC(Remote Procedure Call),即远程过程调用,是一种通过网络从远程计算机程序上请求服务而不需要了解底层网络技术的协议,实现调用远程主机上的方法就像调用本地方法一样. ...

  8. 【poj3294-不小于k个字符串中最长公共子串】后缀数组

    1.注意每两个串之间的连接符要不一样. 2.分组的时候要注意最后一组啊!又漏了! 3.开数组要考虑连接符的数量.100010是不够的至少要101000. #include<cstdio> ...

  9. 【洛谷 P3842】[TJOI2007]线段(DP)

    裸DP.感觉楼下的好复杂,我来补充一个易懂的题解. f[i][0]表示走完第i行且停在第i行的左端点最少用的步数 f[i][1]同理,停在右端点的最少步数. 那么转移就很简单了,走完当前行且停到左端点 ...

  10. Jackson对多态和多子类序列化的处理配置

    目录 Jackson 多态类型的处理 Jackson Jackson可以轻松的将Java对象转换成json对象和xml文档,同样也可以将json.xml转换成Java对象. 多态类型的处理 jacks ...