【题解】JLOI2015战争调度
搜索+状压+DP。
注意到一个性质:考虑一棵以x为根的子树,在x到原树的根的路径上的点如果都已经确定了方案,那么x的左右儿子的决策就彼此独立,互不影响了。所以我们考虑状压一条路径上每一层节点的状态,求出dp[u][x] : 以u为根的子树中分配x个作战平民的最大收益是多少(注意因为是在dfs当中,所以dp数组存的是在当前状况下的最优解)。
代码挺短的,可食用~
#include <bits/stdc++.h>
using namespace std;
#define maxn 1025
int n, m, tot, ans, dp[maxn][maxn];
int w[maxn][], f[maxn][]; int read()
{
int x = , k = ;
char c;
c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} void dfs(int x, int y, int st, int cnt)
{
for(int i = ; i <= cnt; i ++) dp[x][i] = ;
if(y == n - )
{
int id = x - ( << y);
for(int i = ; i < y; i ++)
if(st & ( << i)) dp[x][] += w[id][i];
else dp[x][] += f[id][i];
return;
}
dfs(x << , y + , st | ( << y), cnt >> );
dfs(x << | , y + , st | ( << y), cnt >> );
for(int i = cnt >> ; ~i; i --)
for(int j = cnt >> ; ~j; j --)
dp[x][i + j] = max(dp[x][i + j], dp[x << ][i] + dp[x << | ][j]);
dfs(x << , y + , st, cnt >> );
dfs(x << | , y + , st, cnt >> );
for(int i = cnt >> ; ~i; i --)
for(int j = cnt >> ; ~j; j --)
dp[x][i + j] = max(dp[x][i + j], dp[x << ][i] + dp[x << | ][j]);
} int main()
{
n = read(), m = read();
tot = ( << (n - ));
for(int i = ; i < tot; i ++)
for(int j = n - ; ~j; j --)
w[i][j] = read();
for(int i = ; i < tot; i ++)
for(int j = n - ; ~j; j --)
f[i][j] = read();
dfs(, , , tot);
ans = ;
for(int i = ; i <= m; i ++) ans = max(ans, dp[][i]);
printf("%d\n", ans);
return ;
}
【题解】JLOI2015战争调度的更多相关文章
- 【BZOJ4007】[JLOI2015]战争调度(动态规划)
[BZOJ4007][JLOI2015]战争调度(动态规划) 题面 BZOJ 洛谷 题解 神仙题,我是做不来. 一个想法是设\(f[i][j]\)表示当前考虑到\(i\)节点,其子树内有\(j\)个人 ...
- [JLOI2015]战争调度
[JLOI2015]战争调度 题目 解题报告 考试打了个枚举的暴力,骗了20= = $qsy$大佬的$DP$: 其实就是枚举= =,只不过枚举的比较强= = #include<iostream& ...
- 【bzoj4007】[JLOI2015]战争调度 暴力+树形背包dp
题目描述 给你一棵 $n$ 层的完全二叉树,每个节点可以染黑白两种颜色.对于每个叶子节点及其某个祖先节点,如果它们均为黑色则有一个贡献值,如果均为白色则有另一个贡献值.要求黑色的叶子节点数目不超过 $ ...
- 【bzoj4007】[JLOI2015]战争调度 暴力+树形dp
Description 脸哥最近来到了一个神奇的王国,王国里的公民每个公民有两个下属或者没有下属,这种 关系刚好组成一个 n 层的完全二叉树.公民 i 的下属是 2 * i 和 2 * i +1.最下 ...
- bzoj4007 & loj2111 [JLOI2015]战争调度 复杂度分析+树上背包
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4007 https://loj.ac/problem/2111 题解 同 [NOI2006]网络 ...
- [JLOI2015]战争调度【暴力+树形Dp】
Online Judge:Bzoj4007,Luogu P3262 Label:暴力,树形Dp 题解 参考了这篇blog https://www.cnblogs.com/GXZlegend/p/830 ...
- Luogu P3262 [JLOI2015]战争调度
题意 给定一棵高度为 \(n\) 的完全二叉树,可以将节点设置成两种状态.如果某个叶子 \(x\) 的状态为 \(i\) 同时他的某个祖先也为 \(i\),那么这个叶子就会对祖先产生 \(f_{x,i ...
- BZOJ4007 [JLOI2015]战争调度
根本想不出来... 原来还是暴力出奇迹啊QAQ 无限ymymym中 /************************************************************** Pr ...
- [BZOJ4007][JLOI2015]战争调度(DP+主定理)
第一眼DP,发现不可做,第二眼就只能$O(2^{1024})$暴搜了. 重新审视一下这个DP,f[x][i]表示在x的祖先已经全部染色之后,x的子树中共有i个参战平民的最大贡献. 设k为总结点数,对于 ...
随机推荐
- 基于webSocket的聊天室
前言 不知大家在平时的需求中有没有遇到需要实时处理信息的情况,如站内信,订阅,聊天之类的.在这之前我们通常想到的方法一般都是采用轮训的方式每隔一定的时间向服务器发送请求从而获得最新的数据,但这样会浪费 ...
- thinkphp-PHP实现pdf导出功能
Thinkphp框架引用tcpdf插件,插件下载地址:待续... 代码编写前先引入tcpdf整个文件夹到项目目录的ThinkPHP文件夹下 如:/ThinkPHP/Library/Vendor/tcp ...
- QP之QEP原理
1.QP简介: 量子平台(Quantum Platform, 简称QP)是一个用于实时嵌入式系统的软件框架,QP是轻量级的.开源的.基于层次式状态机的.事件驱动的平台. QP包括事件处理器(QEP). ...
- Python学习 :深浅拷贝
深浅拷贝 一.浅拷贝 只拷贝第一层数据(不可变的数据类型),并创建新的内存空间进行储蓄,例如:字符串.整型.布尔 除了字符串以及整型,复杂的数据类型都使用一个共享的内存空间,例如:列表 列表使用的是同 ...
- Python进阶-函数默认参数
Python进阶-函数默认参数 写在前面 如非特别说明,下文均基于Python3 一.默认参数 python为了简化函数的调用,提供了默认参数机制: def pow(x, n = 2): r = 1 ...
- python-time模块、sys模块、os模块以及大量实例
模块 通俗的说模块就把一个已经写好的带有可使用的函数的文件,通过文件名进行导入,然后调用里面的函数等来完成所需功能,模块封装了你需要实现功能的代码,使用者只需调用即可,简化代码量,缩短编程时间. ti ...
- 牛客网暑期ACM多校训练营(第四场) F
参考:http://www.cnblogs.com/Jadon97/p/9383027.html #include <iostream> #include <cstdio> # ...
- STL 入门 (17 暑假集训第一周)
快速全排列的函数 头文件<algorithm> next_permutation(a,a+n) ---------------------------------------------- ...
- CDSビュー新規作成
CDSビューの追加文書いついては以下の内容も参照してください. ABAP keyword documentation SAP Community. Step 1: CDSビュー作成 Favorite ...
- html5判断设备的动作
相应的事件 deviceorientation事件提供设备的物理方向信息,表示为一系列本地坐标系的旋角. devicemotion事件提供设备的加速信息,表示为定义在设备上的坐标系中的卡尔迪坐标.其还 ...