SRM710 div1 MagicNim(博弈论)
题目大意:
给出n+1堆石子,前n堆石子的数量是a[i],最后一堆只有1个石子,但是具有魔力
拿走该石子的一方可以选择接下来是进行普通的Nim游戏还是anti-nim游戏
问是先手必胜还是必败
首先拿全是1的情况熟悉一下规则
如果全是1,那么无论有几堆,先手都是必胜的
因为如果有奇数个1,那么Alice直接拿掉魔力石子,然后选择不改变游戏,那么他还是赢的
如果有偶数个1,那么Alice直接拿掉魔力式子,然后选择改变游戏,于是他还是赢的。
然后回忆一下anti-nim的先手必胜条件(这里的SG不考虑多魔法石子的那一堆)
SG为0,且所有石子均为1
SG不为0,且存在一堆石子大于1
所以,如果不全是1,且SG为0的话,Alice是必输的,因为他取魔力石子后,仍然无法改变必输的情况
所以现在情况只有不全是1,且SG不为0
注意到这个时候任何一方如果直接取魔力石子,都是必败的
所以双方应该会保持SG不为0,然后进行对峙
首先考虑所以石子的数量不超过3
那么SG函数的值就只有3个,1,2,3
当SG为1或3的时候,肯定有一种取法使得SG为2
而SG为2的最终情况是2附加一个魔力石子,这种情况是必败的
所以当石子的数量不超过3时,SG=2先手必败,反之必胜
接下来考虑石子的数量超过3,也就是有4和4以上的数
那么SG函数的值可以分成1和超过1的那些情况
如果当前SG值为1,那么只能把它变成超过1的值,然而对手又可以把它变回到1
我们考虑假设只有1个超过3的数,那么这时候SG值肯定是大于3的
直接改变这个数,我们可以使得接下来的局面变成SG=2
也就是说,如果只有1个超过3的数,那么就是先手必胜
那么如果SG值为1,且我们知道存在超过3的数,那么超过3的数的数量必定至少有2个
也就是说,经过不断地对峙,原来SG值为1的话,现在SG值仍然为1
但是经过了很多减少,一定会达到这个局面
即SG值为1,且超过3的数量只有2个
当这2个其中的一个数减到4以下时,就变成了只有1个超过3的数
即SG->1->3以上->2(最终结果)
也就是说SG如果为1,必定会转化成2,那么SG=1就是必败局面,而其他情况是必胜局面
最后结论就是
如果有大于3的数,那么SG=1必败
如果没有,那么SG=2必败
(PS:题解的思路没有太明白,不知道是怎么想到右移1位然后分类的,然后莫名分类就分出来了orz)
#include <cstdio>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <set>
#include <vector>
#include <sstream>
#include <typeinfo>
#include <fstream> using namespace std; class MagicNim {
public:
string findWinner(vector<int> a) {
sort(a.begin(), a.end());
int n = a.size(), sg = ;
for(int i = ; i < n; i++) sg ^= a[i];
if(a[n-] >= ) return (sg == ? "Bob" : "Alice");
else return (sg == ? "Bob" : "Alice");
}
};
SRM710 div1 MagicNim(博弈论)的更多相关文章
- SRM710 div1 ReverseMancala(trick)
题目大意, 给定一个有n个点的环,n不超过10,每个点上有一个权重 起始时权重将会给出,然后有2种操作 第一种操作是,选择一个位置i,获得权重w = a[i],把a[i]变成0,然后接下来在环上顺着走 ...
- IT人生知识分享:博弈论的理性思维
背景: 昨天看了<最强大脑>,由于节目比较有争议性,不知为什么,作为一名感性的人,就想试一下如果自己理性分析会是怎样的呢? 过程是这样的: 中国队(3人)VS英国队(4人). 1:李建东( ...
- [poj2348]Euclid's Game(博弈论+gcd)
Euclid's Game Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9033 Accepted: 3695 Des ...
- 博弈论揭示了深度学习的未来(译自:Game Theory Reveals the Future of Deep Learning)
Game Theory Reveals the Future of Deep Learning Carlos E. Perez Deep Learning Patterns, Methodology ...
- TYVJ博弈论
一些比较水的博弈论...(为什么都没有用到那什么SG呢....) TYVJ 1140 飘飘乎居士拯救MM 题解: 歌德巴赫猜想 #include <cmath> #include < ...
- Codeforces 549C. The Game Of Parity[博弈论]
C. The Game Of Parity time limit per test 1 second memory limit per test 256 megabytes input standar ...
- CF#345 (Div1)
论蒟蒻如何被cf虐 以下是身败名裂后的题解菌=========== Div1 A.Watchmen 有n个点,每个点有一个坐标.求曼哈顿距离=欧几里得距离的点对数量. 只需要统计x或y一样的点对数量. ...
- 图论 SRM 674 Div1 VampireTree 250
Problem Statement You are a genealogist specializing in family trees of vampires. Vampire famil ...
- jq对象转为dom对象:$(".div1")[0] dom对象转为jq对象:$(dom对象)
<!DOCTYPE html><html> <head> <meta charset="UTF-8"> <title>& ...
随机推荐
- Asp.net 自定义CustomerSession 存放到Redis中
首先,引用 Redis 操作驱动组件:StackExchange.Redis.dll. 继承SessionStateStoreProviderBase 类, 实现方法: using System; u ...
- 洛谷 U45568 赌神:决斗
题目描述 \mathcal{tomoo}tomoo决定与\mathcal{CYJian}CYJian进行决斗! 已知\mathcal{tomoo}tomoo有\mathcal{N}N张扑克牌,每张扑克 ...
- 如何用Python做自动化特征工程
机器学习的模型训练越来越自动化,但特征工程还是一个漫长的手动过程,依赖于专业的领域知识,直觉和数据处理.而特征选取恰恰是机器学习重要的先期步骤,虽然不如模型训练那样能产生直接可用的结果.本文作者将使用 ...
- Python3爬虫(一)HTTP相关基础
Infi-chu: http://www.cnblogs.com/Infi-chu/ 一.URI.URL.URN.HTTP URI:统一资源标志符 URL:是URI的一个子集 URN:是URI的另一个 ...
- Java——Random类随机整数---18.10.11
一.Random类的定义 1.Random类位于java.util包中,主要用于生成 伪随机数 2.random类将 种子数 作为随机算法的起源数字,计算生成伪随机数,其与生成的随机数字的区间无关 3 ...
- Android面试收集录 数据库
1.SQLite数据库如何查询表table1的第20条到30条记录? select * from table1 limit 19,11 ==>从19开始,11个数据 2.如何才能将table ...
- 初步学习pg_control文件之十二
接前问,初步学习pg_control文件之十一,再来看下面这个 XLogRecPtr minRecoveryPoint; 看其注释: * minRecoveryPoint is updated to ...
- 3122 奶牛代理商 VIII(状压dp)
3122 奶牛代理商 VIII 时间限制: 3 s 空间限制: 256000 KB 题目等级 : 大师 Master 题目描述 Description 小徐是USACO中国区的奶牛代理商 ...
- 用ServiceStack操作使用redis的问题
最近在学习Redis,查阅网上很多资料后使用SericeStack连接redis.在nuget中下载ServiceStack.Redis,主要使用到四个dll 但是运行之后会出现一堆奇怪问题:没有实现 ...
- luogu4172 [WC2006]水管局长
就是用 lct 维护最小生成树 ref #include <algorithm> #include <iostream> #include <cstdio> #in ...