Codeforces 851B/C
B. Arpa and an exam about geometry
传送门:http://codeforces.com/contest/851/problem/B
本题是一个平面几何问题。
平面上有3个点A,B,C,坐标分别为(ax,ay),(bx,by),(cx,cy)。现以平面上一点P为中心,将点A,B,C旋转角度θ,旋转后的点分别为A’,B’,C’。试问:是否存在点P和角度θ,使得“点A’与点B重合,点B’与点C重合”?
以上条件等价于:存在点P和角度θ,使得“|PA|=|PB|=|PC|,且∠APB=∠BPC=θ”。
考虑点A,B,C的几何关系:
若A,B,C位于同一条直线上,则不存在满足条件的点P和角度θ;
若A,B,C不位于同一条直线上,若存在满足条件的点P和角度θ,则由等价条件可知:△APB≌△BPC,因此|AB|=|BC|。
因此,题中条件成立,当且仅当“A,B,C不共线,且|AB|=|BC|”。
A,B,C三点共线的一个充分条件是直线AB与BC的斜率相等,但这是一个充分不必要条件。
A,B,C三点共线的一个充分必要条件可以通过向量形式给出:
向量α1=(Δx1,Δy1)T,α2=(Δx2,Δy2)T,其中Δx1=bx-ax,Δy1=by-ay,Δx2=cx-bx,Δy2=cy-by。
若向量α1与α2共线,则向量组α1,α2线性相关。设A=(α1,α2),则detA=0。
$$\det A=\left|\begin{matrix}\Delta x_1&\Delta x_2\\\Delta y_1&\Delta y_2\end{matrix}\right|=0\Leftrightarrow\Delta x_1\cdot\Delta y_2=\Delta x_2\cdot\Delta y_1$$
因此,A,B,C三点共线的一个充分必要条件是Δx1·Δy2=Δx2·Δy1。参考程序如下:
#include <stdio.h>
#include <stdint.h> int main(void)
{
int ax, ay, bx, by, cx, cy;
scanf("%d%d%d%d%d%d", &ax, &ay, &bx, &by, &cx, &cy);
int64_t dx1 = bx - ax, dy1 = by - ay;
int64_t dx2 = cx - bx, dy2 = cy - by;
if (dx1 * dy2 == dx2 * dy1) printf("No\n");
else {
if (dx1 * dx1 + dy1 * dy1 == dx2 * dx2 + dy2 * dy2) printf("Yes\n");
else printf("No\n");
}
return ;
}
C. Five Dimensional Points
传送门:http://codeforces.com/contest/851/problem/C
本题是一个空间几何问题。
在五维空间中,有n个不同的点P1,P2,...,Pn,Pi的坐标为(ai,bi,ci,di,ei)。现有定义:点A为bad,当且仅当存在不同于点A的点B和点C,使得向量AB与AC的夹角为锐角;否则,点A为good。求{1,2,...,n}的子集S,使得对于S中的每一个元素i,均有Pi为good。
向量的夹角按照以下公式计算:$<\boldsymbol{a},\boldsymbol{b}>=\arccos \frac{\boldsymbol{a}\cdot \boldsymbol{b}}{|\boldsymbol{a}||\boldsymbol{b}|}$
而对于向量a=(a1,a2,...,ak),b=(b1,b2,...,bk),内积a·b的计算公式为: $\boldsymbol{a}\cdot\boldsymbol{b}=\sum_{j=1}^{k}{a_{j}b_{j}}$
本题直接模拟即可,时间复杂度为O(n3)。
参考程序如下:
#include <stdio.h>
#include <stdbool.h>
#define MAX_N 1000 typedef int quint[]; quint p[MAX_N], v[MAX_N][MAX_N];
int good[MAX_N]; int main(void)
{
int n;
scanf("%d", &n);
for (int i = ; i < n; i++) {
for (int k = ; k < ; k++) {
scanf("%d", &p[i][k]);
}
}
for (int i = ; i < n; i++) {
for (int j = ; j < n; j++) {
for (int k = ; k < ; k++) {
v[i][j][k] = p[j][k] - p[i][k];
}
}
}
int cnt = ;
for (int t = ; t < n; t++) {
bool flag = false;
for (int i = ; i < n; i++) {
for (int j = ; j < i; j++) {
int inp = ;
for (int k = ; k < ; k++) {
inp += v[t][i][k] * v[t][j][k];
}
if (inp > ) {
flag = true;
break;
}
}
}
if (!flag) {
good[cnt++] = t + ;
}
}
printf("%d\n", cnt);
for (int i = ; i < cnt; i++) {
printf("%d\n", good[i]);
}
return ;
}
Codeforces 851B/C的更多相关文章
- CodeForces - 851B -Arpa and an exam about geometry(计算几何)
Arpa is taking a geometry exam. Here is the last problem of the exam. You are given three points a, ...
- python爬虫学习(5) —— 扒一下codeforces题面
上一次我们拿学校的URP做了个小小的demo.... 其实我们还可以把每个学生的证件照爬下来做成一个证件照校花校草评比 另外也可以写一个物理实验自动选课... 但是出于多种原因,,还是绕开这些敏感话题 ...
- 【Codeforces 738D】Sea Battle(贪心)
http://codeforces.com/contest/738/problem/D Galya is playing one-dimensional Sea Battle on a 1 × n g ...
- 【Codeforces 738C】Road to Cinema
http://codeforces.com/contest/738/problem/C Vasya is currently at a car rental service, and he wants ...
- 【Codeforces 738A】Interview with Oleg
http://codeforces.com/contest/738/problem/A Polycarp has interviewed Oleg and has written the interv ...
- CodeForces - 662A Gambling Nim
http://codeforces.com/problemset/problem/662/A 题目大意: 给定n(n <= 500000)张卡片,每张卡片的两个面都写有数字,每个面都有0.5的概 ...
- CodeForces - 274B Zero Tree
http://codeforces.com/problemset/problem/274/B 题目大意: 给定你一颗树,每个点上有权值. 现在你每次取出这颗树的一颗子树(即点集和边集均是原图的子集的连 ...
- CodeForces - 261B Maxim and Restaurant
http://codeforces.com/problemset/problem/261/B 题目大意:给定n个数a1-an(n<=50,ai<=50),随机打乱后,记Si=a1+a2+a ...
- CodeForces - 696B Puzzles
http://codeforces.com/problemset/problem/696/B 题目大意: 这是一颗有n个点的树,你从根开始游走,每当你第一次到达一个点时,把这个点的权记为(你已经到过不 ...
随机推荐
- php file_get_contents遇到https的处理办法
最近调整了文件上传后的资源路径,导致pageOffice在线编辑功能无法正常使用,每一次打开文件都报错:该文件为0字节.仔细看了一下程序,整理逻辑流程如下图: 增加日志后发现,保存在服务器路径下的该条 ...
- DotNetBar.Bar作为容器使用的方法及Text更新原理
DotNetBar.Bar作为容器使用的方法及Text更新原理 老帅 一.容器用法 控件DevComponents.DotNetBar.Ba ...
- P1993 小K的农场 差分约束系统
这个题是一道差分约束系统的裸题,什么是差分约束系统呢?就是给了一些大小条件,然后让你找一个满足的图.这时就要用差分约束了. 怎么做呢?其实很简单,就是直接建图就好,但是要把所有条件变为小于等于号,假如 ...
- Java-MyBatis:MyBatis
ylbtech-Java-MyBatis:MyBatis 1.返回顶部 1. MyBatis 本是apache的一个开源项目iBatis, 2010年这个项目由apache software foun ...
- diaowen Maven Webapp
五月 , :: 上午 org.apache.catalina.startup.VersionLoggerListener log INFO: Server version: Apache Tomcat ...
- ”W: GPG 错误:http://ppa.launchpad.net lucid Release: 由于没有公钥,无法验证下列签名:“的问题
在安装更新时,即在运行,命令行sudo apt-get update 或者运行更新管理器的时候,出现如下错误: W: GPG 错误:http://ppa.launchpad.net lucid Rel ...
- mybatis parameterType报错:There is no getter for property named 'xxx' in 'class java.lang.String'
方法1: 当parameterType = "java.lang.String" 的时候,参数读取的时候必须为 _parameter 方法2: 在dao层的时候,设置一下参数,此方 ...
- CSS的常用属性(一)
文本属性 font-size: 16px 文字大小 font-weight: 700 文字粗细 值从100-900 (值为700看上去加粗了) 不推荐使用font-weight: bold font- ...
- 安卓学习之学生签到APP(一)
一.学生定位签到页面 具体实现步骤: 1.1 高德地图申请key 1.创建新应用 进入高德地图api控制台,创建一个新应用.如果您之前已经创建过应用,可直接跳过这个步骤. 2.添加新Key 在创建的应 ...
- Mysql Workbench 执行sql语句删除数据时提示error code 1175
error code 1175是因为有安全模式限制 执行命令SET SQL_SAFE_UPDATES = 0;之后可以进行操作