论文阅读计划1(Benchmarking Streaming Computation Engines: Storm, Flink and Spark Streaming & An Enforcement of Real Time Scheduling in Spark Streaming & StyleBank: An Explicit Representation for Neural Ima)
Benchmarking Streaming Computation Engines: Storm, Flink and Spark Streaming[1]
- 简介:雅虎发布的一份各种流处理引擎的基准测试,包括Storm, Flink, Spark Streaming
- 动机:贴近生产环境,使用Kafka和Redis进行数据获取和存储,设计并实现了一个真实的流处理基准。
- 结论:由于只是一篇基准测试报告,其最重要的就是结论。该论文结论如下:Storm, Flink延迟更小,更加接近于真正的“实时”流处理系统。Spark Streaming有更高的吞吐率,同时延迟也最高。Spark Streaming的性能对批处理间隔时间设置(batch duration setting)敏感。
An Enforcement of Real Time Scheduling in Spark Streaming[2]
- 简介:基于Spark Streaming,提出简单有效的调度策略,动态调整批处理间隔的时间窗减少最坏情况下的事件处理时间。
- 动机:Spark Streaming并不能保证实时事件处理,特别是在输入的事件数量不稳定时,其事件处理会发生显著延迟。
- 实时调度执行:思想就是在每次批处理间隔中间,检查事件数量是否到达偏差点,一旦超过,批处理间隔设置为1/2,以立即提交峰值中的事件,进行处理。偏差点定义为\(n_{avg}*(1+\alpha)\),其中\(n_{avg}\)为批处理间隔中间点的平均事件数量;\(\alpha\)为偏差系数,由用户自主定义,论文中定义为0.3。详细算法如下:

StyleBank: An Explicit Representation for Neural Image Style Transfer[3]
简介:一种新颖的风格迁移方法,通过添加StyleBank layer将自编码器和风格学习分离开来,自编码器不存储任何风格信息。这带来几点好处:结构清晰,风格迁移网络不是一个黑盒子;如果希望训练新的风格,可以固定自编码器,只训练StyleBank layer即可,增量学习代价变小。
动机:风格转换是将一种风格从一个图像迁移到另一个图像,与纹理合成密切相关。提出的StyleBank,将自编码器和风格编码剥离,使得:为样式提供了显式的表示;基于区域的样式转化,即可以抽取局部样式信息,进行样式转移;支持多个风格迁移共享一个自编码器。
网络体系结构

图像被编码器\(\varepsilon\)编码获得feature map,然后与由多个卷积组成的StyleBank layer叉乘,然后经过解码器D解码,获得风格化后的图片。编码器为1个stride-1和2个stride-2的卷积层,对称的,解码器为2个stride-1/2和1个stride-1的卷积层。StyleBank layer由训练得到的n个卷积核组成,称之为“风格银行”。T+1的训练方式,T步训练带StyleBank layer的网络,1步训练不含StyleBank layer的网络,这一步尽可能确保自编码器的输入输出一致,以和保证自编码器没有携带Style信息。
备注:另外这篇文章还介绍了在风格迁移中,对StyleBank layer和自编码器的理解,如较大的卷积核可以学得较大的样式元素,值得一读。
[1]Chintapalli S, Dagit D, Evans B, et al. Benchmarking streaming computation engines: Storm, flink and spark streaming[C]//Parallel and Distributed Processing Symposium Workshops, 2016 IEEE International. IEEE, 2016: 1789-1792.
[2]Liao X, Gao Z, Ji W, et al. An enforcement of real time scheduling in Spark Streaming[C]//Green Computing Conference and Sustainable Computing Conference (IGSC), 2015 Sixth International. IEEE, 2015: 1-6.
[3]Chen D, Yuan L, Liao J, et al. Stylebank: An explicit representation for neural image style transfer[C]//Proc. CVPR. 2017, 1(3): 4.
论文阅读计划1(Benchmarking Streaming Computation Engines: Storm, Flink and Spark Streaming & An Enforcement of Real Time Scheduling in Spark Streaming & StyleBank: An Explicit Representation for Neural Ima)的更多相关文章
- 论文阅读计划2(Deep Joint Rain Detection and Removal from a Single Image)
Deep Joint Rain Detection and Removal from a Single Image[1] 简介:多任务全卷积从单张图片中去除雨迹.本文在现有的模型上,开发了一种多任务深 ...
- 论文阅读(Xiang Bai——【PAMI2017】An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition)
白翔的CRNN论文阅读 1. 论文题目 Xiang Bai--[PAMI2017]An End-to-End Trainable Neural Network for Image-based Seq ...
- Apache Spark源码走读之1 -- Spark论文阅读笔记
欢迎转载,转载请注明出处,徽沪一郎. 楔子 源码阅读是一件非常容易的事,也是一件非常难的事.容易的是代码就在那里,一打开就可以看到.难的是要通过代码明白作者当初为什么要这样设计,设计之初要解决的主要问 ...
- BITED数学建模七日谈之三:怎样进行论文阅读
前两天,我和大家谈了如何阅读教材和备战数模比赛应该积累的内容,本文进入到数学建模七日谈第三天:怎样进行论文阅读. 大家也许看过大量的数学模型的书籍,学过很多相关的课程,但是若没有真刀真枪地看过论文,进 ...
- Code Complete 读后总结和新的扩展阅读计划
Code Complete 读后总结和新的扩展阅读计划 用了一年时间终于将代码大全读完了,在这里做一个简单的总结,并安排下一阶段的扩展阅读计划. 1.选择代码大全作为我程序员职业入门的第一本书,我认为 ...
- 论文阅读笔记 - YARN : Architecture of Next Generation Apache Hadoop MapReduceFramework
作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http:/ ...
- 论文阅读笔记 - Mesos: A Platform for Fine-Grained ResourceSharing in the Data Center
作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http:/ ...
- Deep Reinforcement Learning for Dialogue Generation 论文阅读
本文来自李纪为博士的论文 Deep Reinforcement Learning for Dialogue Generation. 1,概述 当前在闲聊机器人中的主要技术框架都是seq2seq模型.但 ...
- 论文阅读笔记 Word Embeddings A Survey
论文阅读笔记 Word Embeddings A Survey 收获 Word Embedding 的定义 dense, distributed, fixed-length word vectors, ...
随机推荐
- Xcode编译Undefined symbols for architecture xxx 错误总结
可能会遇到这几种错误:Undefined symbols for architecture armv7Undefined symbols for architecture armv7sUndefine ...
- Windows完成端口与Linux epoll技术简介(能看懂)
WINDOWS完成端口编程1.基本概念2.WINDOWS完成端口的特点3.完成端口(Completion Ports )相关数据结构和创建4.完成端口线程的工作原理5.Windows完成端口的实例代码 ...
- matplotlib plot 绘图函数发生阻塞(block)时的解决方法
Is there a way to detach matplotlib plots so that the computation can continue? 在一般编辑器中: from matplo ...
- 【9112】求2的n次方的精确值
Time Limit: 1 second Memory Limit: 2 MB 问题描述 求2^n的精确值.n由用户输入,0<=n<=3232. Input 输入只有一行,一个正整数n. ...
- XMPP开发adiumclient登陆
我写在前面client它已经实现了登陆,我用下面的adium要登录落实的朋友加入,而自己写的client在聊天帐号. 第一次登录时adium工欲善其事,必先例如,下面的配置 保存后.你会发现自己的账号 ...
- 将memo转化为JPG输出,使用Memo1.PaintTo(Bitmap.Canvas)
unit unit1; interface uses Windows, Messages, SysUtils, Graphics, Controls, Forms, StdCtrls, Class ...
- Windows下MinGW跨平台编译和使用log4cpp
Log4cpp 是C++开源日志库,为 C++ 应用程序开发中提供了日志的追踪和调试功能,基于 LGPL 开源协议,移植自 java 的日志项目 log4j, 并在 api 上保持了一致性. 1. 环 ...
- 一:redis 的string类型 - 相关操作
*redisclient使用: =============一类:string的方法================ 介绍:string是redis的最简单类型,一个key相应一个value,strin ...
- textarea随内容自动增加高度
var autoTextarea = function (elem, extra, maxHeight) { extra = extra || 0; var isFirefox = !!documen ...
- yii2.0预先处理方法
public function beforeAction($action){ return $action; }