昨天发现的了一段非常令人惊奇的JavaScript代码,是由ShaunF编写的automatically solves captchas,一个专门应用在Megaupload网站的Greasemonkey脚本。如果你要亲自尝试一下,可以先看看这个演示。而这个脚本的作用,正如名字所示,可以识别这个网站的验证码。
 
现在,这个网站的验证码已经不是个什么难题了。(实际上,这是一个本来设计的就不怎么好的验证码,下面会给出一些例子)
对于这段脚本,我们有很多值得注意的事情:
  1. Canvas可以将图片嵌入到画布上,而getImageData函数可以从画布上获取验证码的像素数据。
  2. 这个脚本完全用JavaScript编写了一套神经网络的实现。
  3. 通过Canvas从图片获取的像素数据,被传入神经网络,通过OCR技术来获取图片中所表示的真实字符。
如果我们翻开源代码,就会发现这个脚本究竟是如何实现的,我们也可以领会这个验证码究竟是如何实现的。就像我之前提到的,这个验证码设计的本身就不好,只有3个字母,而且还用不同的颜色区分,只包含26个字母,最主要的,他们始终是同一字体。
 
第一个步骤很明确:把验证码的像素图像复制到Canvas中,并且转换为灰度模式。
function convert_grey(image_data){
for (var x = 0; x < image_data.width; x++){
for (var y = 0; y < image_data.height; y++){
var i = x*4+y*4*image_data.width;
var luma = Math.floor(image_data.data[i] * 299/1000 +
image_data.data[i+1] * 587/1000 +
image_data.data[i+2] * 114/1000); image_data.data[i] = luma;
image_data.data[i+1] = luma;
image_data.data[i+2] = luma;
image_data.data[i+3] = 255;
}
}
}

接下来Canvas被分解成3个独立的像素矩阵,每个矩阵都包含一个字母。(按道理来说,这是非常容易的事情。每个字母都由不同颜色组成,可以直接用颜色区分不同的字母。)

filter(image_data[0], 105);
filter(image_data[1], 120);
filter(image_data[2], 135);
function filter(image_data, colour){
for (var x = 0; x < image_data.width; x++){
for (var y = 0; y < image_data.height; y++){
var i = x*4+y*4*image_data.width; // Turn all the pixels of the certain colour to white
if (image_data.data[i] == colour) {
image_data.data[i] = 255;
image_data.data[i+1] = 255;
image_data.data[i+2] = 255; // Everything else to black
} else {
image_data.data[i] = 0;
image_data.data[i+1] = 0;
image_data.data[i+2] = 0;
}
}
}
}

然后最后,为了得到一个清晰的字母,我们还要把那些不相干的噪声像素从图片上去除。具体的方法,先要找到那些前面或者后面被黑色(之前没有匹配的像素)包裹的白色像素(之前已经匹配的像素),如果找到这样的像素,就简单的把它门直接删除。

var i = x*4+y*4*image_data.width;
var above = x*4+(y-1)*4*image_data.width;
var below = x*4+(y+1)*4*image_data.width; if (image_data.data[i] == 255 &&
image_data.data[above] == 0 &&
image_data.data[below] == 0) {
image_data.data[i] = 0;
image_data.data[i+1] = 0;
image_data.data[i+2] = 0;
}

我们现在已经得到了非常接近的图形,但还不够明确。脚本接下来会检测出这些形状的边缘,具体的是要找到图形中最上面、最下面、最左面和最右面的像素,然后把图形转换成矩形,最后将矩形的数据转换为一个20*25的矩阵。

cropped_canvas.getContext("2d").fillRect(0, 0, 20, 25);
var edges = find_edges(image_data[i]);
cropped_canvas.getContext("2d").drawImage(canvas, edges[0], edges[1],
edges[2]-edges[0], edges[3]-edges[1], 0, 0,
edges[2]-edges[0], edges[3]-edges[1]); image_data[i] = cropped_canvas.getContext("2d").getImageData(0, 0,
cropped_canvas.width, cropped_canvas.height);
最后,我们得到了什么?一个20*25的矩阵,里面包含着一个绘制着黑白两种颜色像素的矩形,真是令人兴奋啊。
 
矩形被进一步的缩小。一些关键位置的像素以接受体(receptors)的状态被提取出来,这些接受体最 终会被传入神经网络。举例而言,某个接受体具体对应的可能是位于9*6位置像素的状态,有像素或者没有像素。脚本会提取一系列这样的状态(远少于对 20*25矩阵整个计算的次数 - 只提取64种状态),并将这些状态传入神经网络。
 
你可能要问,为什么不直接对像素进行比较?为什么还要和神经网络扯在一起?问题的关键在于,我们要去掉那些模棱两可的情况。如果你试过了之前提到的演示就会发现,直接进行像素比较比通过神经网络比较,更容易出现偶尔判断错误的情况。但我们必须承认,对于大部分用户来说,直接的像素比较应该已经足够了。
 
下一个步骤就是尝试猜字母了。神经网络中传入了64个布尔值(由其中的一个字母图像获取而来),同时包含 一系列预先计算好的数据。神经网络的理念之一,就是我们首先要知道希望得到什么结果。很可能脚本的作者反复的运行脚本,并收集了一系列最佳评分,这些评分 可能包含这样的含义:“如果9*6位置存在像素,那么有58%的可能是字母A”。
 
当神经网络对验证码中一个字母对应的64个布尔值进行计算以后,和一个预先计算好的字母表相比较,然后为和每个字母的匹配都给出一个分数。(最后的结果可能类似:98%的可能是字母A,36%的可能是字母B等)
 
当对验证码中的三个字母都经过了计算以后,最终的结果也就出来了。确定的是,肯定不是100%精确的(不 知道如果在开始的时候不将字母转换成矩形,是不是可以提高评分的精度),但这已经相当好了,至少对于当前的用途来说。而且所有的操作都是在浏览器中,通过 基于标准的客户端技术实现的,这不是很神奇么?

补充说明一下,这个脚本应该算是一个特例吧,这项技术可能会应用在更多设计不良的验证码上,但对于更多设计复杂的验证码来说,就有点力不从心了(尤其是这种基于客户端的分析)。

我非常期待能有更多人从这个项目中得到灵感,开发出更多有意思的东西来,它的潜力太巨大了。

《译文》借助OCR和神经网络,用JavaScript识别验证码的更多相关文章

  1. 深度学习之卷积神经网络(CNN)的应用-验证码的生成与识别

    验证码的生成与识别 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10755361.html 目录 1.验证码的制 ...

  2. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 18—Photo OCR 应用实例:图片文字识别

    Lecture 18—Photo OCR 应用实例:图片文字识别 18.1 问题描述和流程图 Problem Description and Pipeline 图像文字识别需要如下步骤: 1.文字侦测 ...

  3. javaScript识别网址文本并转为链接文本

    最近项目有个需求:用户之间发送消息时,如果发送者输入的信息中含有网址文本,要在接受者界面中显示网址链接,点击该链接直接跳转到网页.这个功能和 QQ 发送网址文本的效果非常像,可以说是一模一样的. 思路 ...

  4. 用标准3层神经网络实现MNIST识别

    一.MINIST数据集下载 1.https://pjreddie.com/projects/mnist-in-csv/      此网站提供了mnist_train.csv和mnist_test.cs ...

  5. ocr 文字区域检测及识别

    ocr 文字区域检测及识别 # coding=utf- from PIL import Image, ImageFilter, ImageEnhance from skimage.filters im ...

  6. 硕毕论文_基于 3D 卷积神经网络的行为识别算法研究

    论文标题:基于 3D 卷积神经网络的行为识别算法研究 来源/作者机构情况: 中  国  地  质  大  学(北京),计算机学院,图像处理方向 解决问题/主要思想贡献: 1. 使用张量CP分解的原理, ...

  7. 基于卷积神经网络的人脸识别项目_使用Tensorflow-gpu+dilib+sklearn

    https://www.cnblogs.com/31415926535x/p/11001669.html 基于卷积神经网络的人脸识别项目_使用Tensorflow-gpu+dilib+sklearn ...

  8. Pytorch实现基于卷积神经网络的面部表情识别(详细步骤)

    文章目录 一.项目背景 二.数据处理 1.标签与特征分离 2.数据可视化 3.训练集和测试集 三.模型搭建 四.模型训练 五.完整代码 一.项目背景数据集cnn_train.csv包含人类面部表情的图 ...

  9. selenium自动化 | 借助百度AI开放平台识别验证码登录职教云

    #通过借助百度AI开放平台识别验证码登录职教云 from PIL import Image from aip import AipOcr import unittest # driver.get(zj ...

随机推荐

  1. Xcode崩溃定位:异常位置Exception的断点

    1.全局Exception断点 在XCode界面中按cmd + 6跳到Breakpoint的tab(或者点击下图左上第7个图标),然后点击左下角的+号,增加一个Exception的断点,如下图所示.这 ...

  2. noip刷题记录 20170818

    天天爱跑步 lca + 树上差分 #include<iostream> #include<cstdio> #include<cstdlib> #include< ...

  3. 机房收费系统vb.net之打包与部署(一)

    从机房重构到如今,我最大的感受就是万事开头难,万事结尾难!开头难是由于那个思路理不清,对三层已经设计模式的应用不够熟悉,结尾难就是打包部署了!这几天非常头疼,以为完毕了代码就大功告成了,但是没想到啊, ...

  4. Modbus 通信协议详解

    一.Modbus 协议简介     Modbus 协议是应用于电子控制器上的一种通用语言.通过此协议,控制器相互之间.控制器经由网络(例如以太网)和其它设备之间可以通信.它已经成为一通用工业标准.有了 ...

  5. 外部进程嵌入到Qt进程界面(使用QWindow::fromWinId)

    有时候需要做框架集成的东西,需要把其他客户端像组件一样集成到一个客户端中,类似于一个软件集成的平台客户端,统一用一个中心管理的客户端做类似于控制面板一样的东西去调用不同的软件.此时就必须相应不同的点击 ...

  6. uwp - 获取当前屏幕宽高/应用宽高

    原文:uwp - 获取当前屏幕宽高/应用宽高 public static Size GetScreen() { var applicationView = ApplicationView.GetFor ...

  7. 组态DNS、搜索域名和主机名

    一个.组态DNS和搜索领域 特别配置DNS该文件是/etc/resolv.conf:同时,我们可以ifcfg-eth0网卡的配置和其他配置文件中指定的. 演示样本: [root@instructor ...

  8. 如何完全备份android在系统system分区和data分

    安德鲁斯系统备份是非常的情况下,可以使用.下面的这个python脚本.它可以用来备份整个data分:所有data分区的文件和文件夹打包data.zip.并产生recovery专用edify脚本upda ...

  9. Emgu-WPF学习使用 - 颜色映射

    原文:Emgu-WPF学习使用 - 颜色映射 string sFile = ""; if (!String.IsNullOrEmpty(AppConstUtils.GDefault ...

  10. MIME映射(程序映射)

    MIME(Multipurpose Internet Mail Extensions)多用途互联网邮件扩展类型.是设定某种扩展名的文件用一种应用程序来打开的方式类型,当该扩展名文件被访问的时候,浏览器 ...