Alignment
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 14486   Accepted: 4695

Description

In the army, a platoon is composed by n soldiers. During the morning inspection, the soldiers are aligned in a straight line in front of the captain. The captain is not satisfied with the way his soldiers are aligned; it is true that the soldiers are aligned
in order by their code number: 1 , 2 , 3 , . . . , n , but they are not aligned by their height. The captain asks some soldiers to get out of the line, as the soldiers that remain in the line, without changing their places, but getting closer, to form a new
line, where each soldier can see by looking lengthwise the line at least one of the line's extremity (left or right). A soldier see an extremity if there isn't any soldiers with a higher or equal height than his height between him and that extremity. 



Write a program that, knowing the height of each soldier, determines the minimum number of soldiers which have to get out of line. 

Input

On the first line of the input is written the number of the soldiers n. On the second line is written a series of n floating numbers with at most 5 digits precision and separated by a space character. The k-th number from this line represents the height of
the soldier who has the code k (1 <= k <= n). 



There are some restrictions: 

• 2 <= n <= 1000 

• the height are floating numbers from the interval [0.5, 2.5] 

Output

The only line of output will contain the number of the soldiers who have to get out of the line.

Sample Input

8
1.86 1.86 1.30621 2 1.4 1 1.97 2.2

Sample Output

4

Source




    题意:有n个士兵,每个士兵都有一个身高,如今他们依照左右顺序进行站队,求删去最小的士兵数。是的每个士兵都能通过左边或者右边的无穷远处。


    思路:枚举每个士兵,算出以他为最长上升子序列的终点,以他的后一个士兵作为最长下降子序列的起点,求出这种最大值。


#include<iostream>
#include<algorithm>
#include<stdio.h>
#include<string.h>
#include<stdlib.h> #define inf 9999
#define INF -9999 using namespace std; int n;
double a[1010];
double dp1[1010],dp2[1010]; int res1(int len,double num)
{
int l = 0;
int r = len;
while(l!=r)
{
int mid = (l + r) >> 1;
if(dp1[mid] == num)
{
return mid;
}
else if(dp1[mid]<num)
{
l = mid + 1;
}
else
{
r = mid;
}
}
return l;
} int res2(int len,double num)
{
int l = 0;
int r = len;
while(l!=r)
{
int mid = (l+r)>>1;
if(dp2[mid] == num)
{
return mid;
}
else if(dp2[mid]>num)
{
l = mid + 1;
}
else
{
r = mid;
}
}
return l;
} int main()
{
while(scanf("%d",&n)!=EOF)
{
for(int i=1; i<=n; i++)
{
scanf("%lf",&a[i]);
}
int len1 = 1,len2 = 1;
dp1[0] = -99;
dp2[0] = 99;
int maxx = -100;
for(int i=1; i<n; i++)
{
int ans = 0;
len1 = 1;
dp1[0] = -99;
for(int j=1; j<=i; j++)
{
dp1[i] = inf;
int k1 = res1(len1,a[j]);
if(k1 == len1)
{
len1++;
}
dp1[k1] = a[j];
}
ans = len1 - 1;
len2 = 1;
dp2[0] = 99;
for(int j=i+1; j<=n; j++)
{
int t = (j - i);
dp2[t] = INF;
int k2 = res2(len2,a[j]);
if(k2 == len2)
{
len2++;
}
dp2[k2] = a[j];
}
ans += len2 - 1;
maxx = max(maxx,ans);
}
printf("%d\n",n - maxx);
}
return 0;
}

POJ 1836 Alignment(DP max(最长上升子序列 + 最长下降子序列))的更多相关文章

  1. poj 1836 Alignment(dp)

    题目:http://poj.org/problem?id=1836 题意:最长上升子序列问题, 站队,求踢出最少的人数后,使得队列里的人都能看到 左边的无穷远处 或者 右边的无穷远处. 代码O(n^2 ...

  2. poj 1836 Alignment(线性dp)

    题目链接:http://poj.org/problem?id=1836 思路分析:假设数组为A[0, 1, …, n],求在数组中最少去掉几个数字,构成的新数组B[0, 1, …, m]满足条件B[0 ...

  3. POJ 1836 Alignment 水DP

    题目: http://poj.org/problem?id=1836 没读懂题,以为身高不能有相同的,没想到排中间的两个身高是可以相同的.. #include <stdio.h> #inc ...

  4. POJ 1836 Alignment 最长递增子序列(LIS)的变形

    大致题意:给出一队士兵的身高,一开始不是按身高排序的.要求最少的人出列,使原序列的士兵的身高先递增后递减. 求递增和递减不难想到递增子序列,要求最少的人出列,也就是原队列的人要最多. 1 2 3 4 ...

  5. POJ 1836 Alignment (双向DP)

    Alignment Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 10804   Accepted: 3464 Descri ...

  6. POJ 1836 Alignment

    Alignment Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 11450 Accepted: 3647 Descriptio ...

  7. POJ 1836 Alignment --LIS&LDS

    题意:n个士兵站成一排,求去掉最少的人数,使剩下的这排士兵的身高形成“峰形”分布,即求前面部分的LIS加上后面部分的LDS的最大值. 做法:分别求出LIS和LDS,枚举中点,求LIS+LDS的最大值. ...

  8. POJ - 1836 Alignment (动态规划)

    https://vjudge.net/problem/POJ-1836 题意 求最少删除的数,使序列中任意一个位置的数的某一边都是递减的. 分析 任意一个位置的数的某一边都是递减的,就是说对于数h[i ...

  9. BUY LOW, BUY LOWER_最长下降子序列

    Description The advice to "buy low" is half the formula to success in the bovine stock mar ...

随机推荐

  1. mysql 登录与权限

    一.mysql 登录方式 1.1 格式:mysql -u用户名 -p密码 -h ip -P 端口 -S 套接字 mysql -uvagrant -pvagrant -h 127.0.0.1 -P 33 ...

  2. Queue 与List、LinkedList与 ArrayList 区别

    List 是一个接口,不能实例化,通过实例化ArrayList 或者LinkedList来调用:List list = new ArrayList(); |--List: 元素是有序的(怎么存的就怎么 ...

  3. B - Beautiful Year

    Problem description It seems like the year of 2013 came only yesterday. Do you know a curious fact? ...

  4. linux下恢复被删除的文件

    https://cloud.tencent.com/developer/article/1028317

  5. javascript中对象属性搜索原则

    为什么通过对象就能访问到原型中的属性或者方法? 属性搜索原则: 1 首先会在对象本身查找有没有该属性,如果有直接返回 2 如果没有,此时就会在构造函数中查找通过this给对象添加的成员中有没有,如果有 ...

  6. Absolute Horizontal And Vertical Centering In CSS

    Quick CSS Trick: How To Center an Object Exactly In The Center Centering in CSS: A Complete Guide Ab ...

  7. CImage类的使用介绍!

    链接参考:http://www.cnblogs.com/juncheng/articles/1600730.html CImage是MFC和ATL共享的新类,它能从外部磁盘中调入一个JPEG.GIF. ...

  8. layer弹出框的用法

    页面中引入  layer.js 就行了 1.弹出一个提示信息: layer.msg("我是哦提示信息"); 2.弹出一个带选择的按钮的框 layer.open({ title: ' ...

  9. UWP 利用DataGrid控件创建表格

    通过 Nuget 搜索 Microsoft.Toolkit.Uwp.UI.Controls.DataGrid 安装库,在XAML文件中添加引用库 xmlns:controls="using: ...

  10. re模块findall函数用法

    title: Python subtitle: 1.re模块findall函数用法 date: 2018-12-13 10:17:28 --- Python re 模块 findall 函数用法简述 ...