A. Boredom
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Alex doesn't like boredom. That's why whenever he gets bored, he comes up with games. One long winter evening he came up with a game and decided to play it.

Given a sequence a consisting of n integers. The
player can make several steps. In a single step he can choose an element of the sequence (let's denote it ak)
and delete it, at that all elements equal to ak + 1 and ak - 1 also
must be deleted from the sequence. That step brings ak points
to the player.

Alex is a perfectionist, so he decided to get as many points as possible. Help him.

Input

The first line contains integer n (1 ≤ n ≤ 105)
that shows how many numbers are in Alex's sequence.

The second line contains n integers a1, a2,
..., an (1 ≤ ai ≤ 105).

Output

Print a single integer — the maximum number of points that Alex can earn.

Sample test(s)
input
2
1 2
output
2
input
3
1 2 3
output
4
input
9
1 2 1 3 2 2 2 2 3
output
10
Note

Consider the third test example. At first step we need to choose any element equal to 2. After that step our sequence looks like this [2, 2, 2, 2].
Then we do 4 steps, on each step we choose any element equals to 2.
In total we earn 10 points.

Dp,设数i出现a[i]次

非常easy发现,从n取到i(i全取)的最优值f{i}仅仅与f(i+1)和f(i+2)相关

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<functional>
#include<iostream>
#include<cmath>
#include<cctype>
#include<ctime>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Lson (x<<1)
#define Rson ((x<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (100000007)
#define MAXN (100000+10)
long long mul(long long a,long long b){return (a*b)%F;}
long long add(long long a,long long b){return (a+b)%F;}
long long sub(long long a,long long b){return (a-b+(a-b)/F*F+F)%F;}
typedef long long ll;
int n,a[MAXN]={0};
ll f[MAXN]={0};
int main()
{
// freopen("seq.in","r",stdin);
// freopen(".out","w",stdout);
MEM(a)
cin>>n;
int p,m=0;
For(i,n)
{
scanf("%d",&p);
a[p]++;
m=max(m,p);
}
ll ans=0;
ForD(i,m)
{
f[i]=max(f[i+1],f[i+2]+(ll)i*a[i]);
ans=max(ans,f[i]);
}
cout<<ans<<endl; return 0;
}

版权声明:本文博客原创文章,博客,未经同意,不得转载。

CF 455A(Boredom-dp)的更多相关文章

  1. CF 455A Boredom

    A. Boredom time limit per test 1 second memory limit per test 256 megabytes input standard input out ...

  2. Codeforces 455A - Boredom - [DP]

    题目链接:https://codeforces.com/problemset/problem/455/A 题意: 给出一个 $n$ 个数字的整数序列 $a[1 \sim n]$,每次你可以选择一个 $ ...

  3. CF 553A 组合DP

    http://codeforces.com/problemset/problem/553/A A. Kyoya and Colored Balls time limit per test 2 seco ...

  4. CodeForces 455A Boredom (DP)

    Boredom 题目链接: http://acm.hust.edu.cn/vjudge/contest/121334#problem/G Description Alex doesn't like b ...

  5. Codeforces 455A Boredom (线性DP)

    <题目链接> 题目大意:给定一个序列,让你在其中挑选一些数,如果你选了x,那么你能够得到x分,但是该序列中所有等于x-1和x+1的元素将全部消失,问你最多能够得多少分. 解题分析:从小到大 ...

  6. Codeforces 455A Boredom 取数字的dp

    题目链接:点击打开链接 给定一个n长的序列 删除x这个数就能获得x * x的个数 的分数,然后x+1和x-1这2个数会消失.即无法获得这2个数的分数 问最高得分. 先统计每一个数出现的次数.然后dp一 ...

  7. CF 445A 简单DP

    今天早上找一道题的bug,还是找不出来,下午刷了几道水题,晚上准备回家的事, 然后本来想打CF的,一看,数学场,不打了. 这道题的题意: 给出一个序列,每次你可以从这个序列里面选择一个数ak,删除,然 ...

  8. Codeforces Round #260 (Div. 1) A - Boredom DP

    A. Boredom Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/455/problem/A ...

  9. HDU 4632 CF 245H 区间DP(回文)

    先说HDU 4632这道题,因为比较简单,题意就是给你一个字符串,然后给你一个区间,叫你输出区间内所有的回文子序列,注意是回文子序列,不是回文字串. 用dp[i][j]表示区间[i,j]内的回文子序列 ...

  10. CF 219D 树形DP

    CF 219D [题目链接]CF 219D [题目类型]树形DP &题意: 给一个n节点的有向无环图,要找一个这样的点:该点到其它n-1要逆转的道路最少,(边<u,v>,如果v要到 ...

随机推荐

  1. SpringBoot 使用 @Value 从 YAML文件读取属性(转)

    在 YAML中有如下配置 paypal: mode:live 在类中,通过 @Value属性读取 @Value("${paypal.mode}") private String m ...

  2. 终端中经常使用的shell 命令

    Mac 在shell命令终端中,Ctrl+n相当于方向向下的方向键,Ctrl+p相当于方向向上的方向键. 在命令终端中通过它们或者方向键能够实现对历史命令的高速查找.这也是高速输入命令的技巧. 在命令 ...

  3. [内核编程] 4.1 技术原理 & 4.2 键盘过滤框架

    4.1 技术原理 & 4.2 键盘过滤框架 4.1 预备知识 符号链接:符号链接其实就是一个“别名”.可以用一个不同的名字来代表一个设备对象(实际上),符号链接可以指向任何有名字的对象. Zw ...

  4. Android 使用binder访问service的方式

    binder机制是贯穿整个Android系统的进程间访问机制,经常被用来访问service,我们结合代码看一下binder在访问service的情形下是怎么具体使用的. service 你可以理解成没 ...

  5. (转)PHP 函数的实现原理及性能分析

    前言 任何语言中,函数都是最基本的组成单元.对于php的函数,它具有哪些特点?函数调用是怎么实现的?php函数的性能如何,有什么使用建议?本文 将从原理出发进行分析结合实际的性能测试尝试对这些问题进行 ...

  6. js进阶 11-13 jquery如何包裹元素和去除元素外的包裹

    js进阶 11-13  jquery如何包裹元素和去除元素外的包裹 一.总结 一句话总结:wrap().wrapAll().unwrap().innerWrap()四个方法 1.jquery中unwr ...

  7. 基于 MySQL 5.6 keepalived的双主搭建

    环境介绍: 说明 IP 节点1 192.168.56.56 节点2 192.168.56.57 w_ip 192.168.56.6 安装keepalived tar -zxvf keepalived- ...

  8. Java 8新特性探究(十一)Base64详解

    开发十年,就只剩下这套架构体系了! >>>   BASE64 编码是一种常用的字符编码,在很多地方都会用到.但base64不是安全领域下的加密解密算法.能起到安全作用的效果很差,而且 ...

  9. 如何使用Name对象,包括WorkspaceNames和DatasetNames

    转自chanyinhelv原文 如何使用Name对象,包括WorkspaceNames和DatasetNames 第一原文链接 该博主还有很多有关arcgis二次开发的不错的文章. 如何使用Name对 ...

  10. 《图说VR》——HTC Vive控制器按键事件解耦使用

    本文章由cartzhang编写,转载请注明出处. 全部权利保留. 文章链接:http://blog.csdn.net/cartzhang/article/details/53915229 作者:car ...