传送门

中文题面:

题目描述

有一棵苹果树,如果树枝有分叉,一定是分 2 叉(就是说没有只有 1 个儿子的结点,这棵树共有N 个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1。

我们用一根树枝两端连接的结点的编号来描述一根树枝的位置。下面是一颗有 4 个树枝的树:

2 5

\ /

3 4

\ /

1

现在这颗树枝条太多了,需要剪枝。但是一些树枝上长有苹果。

给定需要保留的树枝数量,求出最多能留住多少苹果。

输入格式

第1行2个数,N 和Q(1<=Q<= N,1<N<=100)。N 表示树的结点数,Q 表示要保留的树枝数量。

接下来 N-1 行描述树枝的信息。

每行3个整数,前两个是它连接的结点的编号,第3个数是这根树枝上苹果的数量。

每根树枝上的苹果不超过30000个。

输出格式

一个数,最多能留住的苹果的数量。

样例数据 1

输入

5 2

1 3 1

1 4 10

2 3 20

3 5 20

输出

21

题目分析

此题是选课的简化版,因为规定了树是一颗二叉树,dp[i][j]表示以i为根节点的子树选择j条边的最大值,因为是棵树,所以可以将边权转移到点权上,剩下的就与选课一题异曲同工。

若选择当前节点:

  1. 此节点是根节点的话,左右儿子一共分担j个。枚举即可。
  2. 此节点不是根节点,左右儿子一共分担j-1个。

    若不选择当前节点:dp = 0。

    取较优值。

code

#include<bits/stdc++.h>
using namespace std; const int N = 100;
int ecnt, adj[N + 5], go[N * 2 + 5], nxt[N * 2 + 5], val[N + 5], len[N * 2 + 5];
int fa[N + 5], ch[N + 5][2];
typedef long long ll;
ll dp[N + 5][N + 5];
int n, m; inline void addEdge(int u, int v, int c){
nxt[++ecnt] = adj[u], adj[u] = ecnt, go[ecnt] = v, len[ecnt] = c;
nxt[++ecnt] = adj[v], adj[v] = ecnt, go[ecnt] = u, len[ecnt] = c;
} inline void dfs(int u, int f){
fa[u] = f;
int cnt = -1;
for(int e = adj[u]; e; e = nxt[e]){
int v = go[e];
if(v == f) continue;
ch[u][++cnt] = v;
val[v] = len[e];
dfs(v, u);
}
} inline ll DP(int u, int k){
if(u == 0) return dp[u][k] = 0;
if(dp[u][k] != -1) return dp[u][k]; dp[u][k] = 0;
//选择这个
for(int i = 0; i <= k - 1 + (u == 1 ? 1 : 0); i++){
DP(ch[u][0], i);
DP(ch[u][1], k - 1 + (u == 1 ? 1 : 0) - i);
dp[u][k] = max(dp[u][k], 1LL * val[u] + dp[ch[u][0]][i] + dp[ch[u][1]][k - 1 + (u == 1 ? 1 : 0) - i]);
} return dp[u][k];
} int main(){
ios::sync_with_stdio(false);
cin.tie(NULL), cout.tie(NULL);
cin >> n >> m;
for(int i = 1; i < n; i++){
int x, y, c;
cin >> x >> y >> c;
addEdge(x, y, c);
}
dfs(1, 0);
// for(int i = 1; i <= n; i++) cout<<i<<": "<<fa[i]<<" "<<ch[i][0]<<" "<<ch[i][1]<<" "<<val[i]<<endl;
memset(dp, -1, sizeof dp);
DP(1, m);
cout << dp[1][m] << endl;
return 0;
}

二叉苹果树 - 二叉树树型DP的更多相关文章

  1. 洛谷P2015 二叉苹果树(树状dp)

    题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来 ...

  2. 【P2015】二叉苹果树(树状DP)

    蒟蒻弱弱的开始做树形DP了,虽然做了这道题还是有很多不懂得地方. 这道题大意就是有一棵树,只保留其中q条边,求出剩余边的最大权值. 然后开始考虑怎么做(其实是看着题解出思路....),很容易可以想出D ...

  3. 二叉苹果树|codevs5565|luoguP2015|树形DP|Elena

    二叉苹果树 题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的 ...

  4. BZOJ 1864 三色二叉树 - 树型dp

    传送门 题目大意: 给一颗二叉树染色红绿蓝,父亲和儿子颜色必须不同,两个儿子颜色必须不同,问最多和最少能染多少个绿色的. 题目分析: 裸的树型dp:\(dp[u][col][type]\)表示u节点染 ...

  5. 刷题总结——二叉苹果树(ssoj树形dp+记忆化搜索)

    题目: 题目背景 URAL:http://acm.timus.ru/problem.aspx?space=1&num=1018 题目描述 有一棵苹果树,如果树枝有分叉,一定是分 2 叉(就是说 ...

  6. CJOJ 1976 二叉苹果树 / URAL 1018 Binary Apple Tree(树型动态规划)

    CJOJ 1976 二叉苹果树 / URAL 1018 Binary Apple Tree(树型动态规划) Description 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的 ...

  7. P2015 二叉苹果树,树形dp

    P2015 二叉苹果树 题目大意:有一棵二叉树性质的苹果树,每一根树枝上都有着一些苹果,现在要去掉一些树枝,只留下q根树枝,要求保留最多的苹果数(去掉树枝后不一定是二叉树) 思路:一开始就很直接的想到 ...

  8. [Luogu2015]二叉苹果树(树形dp)

    [Luogu2015] 二叉苹果树 题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. ...

  9. [树形DP]二叉苹果树

    二 叉 苹 果 树 二叉苹果树 二叉苹果树 题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定 ...

随机推荐

  1. 福昕pdf阅读器如何删除所有注释

    然后选中第一个 移动到最后按住shift,选择最后一个, 总之就是选中所有的 然后右键,点击删除即可. 不要忘记保存呦

  2. java与javax的区别分析

    Java是一种受C语言影响的编程语言.Java和Javax本质上是与Java编程语言的上下文一起使用的包.实际上Java和Javax没有区别.这只是不同的名字. Java是一种编程语言,受到C语言的影 ...

  3. swift开发多线程篇 - NSThread 线程相关简单说明(一些使用和注意点)

    一 说明 本文涉及代码可以从https://github.com/HanGangAndHanMeimei/Code地址获得. 二 NSThread的基本使用和创建 1)基本用法(主线程|当前线程) 1 ...

  4. iOS改动UIButton setTitle字体颜色和调整字体位置

    调整Title字体位置 [button setTitleEdgeInsets:UIEdgeInsetsMake(10, 0, 0, 0)]; 四个參数分别代表:上边界,左边界.下边界,右边界 改动UI ...

  5. Android 系统状态栏一体化实现

    自上周更新了QQ手机client.对于新版本号的QQ,系统状态栏也有蓝色色调,看起来有种清爽感觉.于是想自已也实现这样的效果,随查阅资料,自已调试实现这样的效果.Android 系统4.4以上都能够具 ...

  6. C/C++ 程序的跟踪和分析工具 uftrace

    uftrace 用于跟踪和分析 C/C++ 编写的程序的执行情况,它受到 Linux 内核的 ftrace 框架的启发(特别是 function graph tracer),支持 userspace ...

  7. SetForegroundWindow

    SetForegroundWindow 函数功能:该函数将创建指定窗口的线程设置到前台,并且激活该窗口.键盘输入转向该窗口,并为用户改各种可视的记号.系统给创建前台窗口的线程分配的权限稍高于其他线程. ...

  8. 【t099】最接近神的人

    Time Limit: 1 second Memory Limit: 128 MB [问题描述] 破解了符文之语,小FF开启了通往地下的道路.当他走到最底层时,发现正前方有一扇巨石门,门上雕刻着一幅古 ...

  9. 高速在MyEclipse中打开jsp类型的文件

    MyEclipse打开jsp时老是要等上好几秒,嗯嗯,这个问题的确非常烦人,事实上都是MyEclipse的"自作聪明"的结果(它默认用Visual Designer来打开的),进行 ...

  10. python高级学习目录

    1. Linux介绍.命令1.1. 操作系统(科普章节) 1.2. 操作系统的发展史(科普章节) 1.3. 文件和目录 1.4. Ubuntu 图形界面入门 1.5. Linux 命令的基本使用 1. ...