spark transform系列__groupByKey
这个操作的作用依据同样的key的全部的value存储到一个集合中的一个玩意.
def groupByKey(): RDD[(K, Iterable[V])] = self.withScope {
groupByKey(defaultPartitioner(self))
}
在做groupByKey的操作时,由于须要依据key对数据进行又一次的分区操作,因此这个操作须要有一个partitioner的实例.默认是hash算子.这个操作依据当前操作的RDD中是否有partitioner,同一时候这个partitioner与当前的传入的partitioner的实例是否同样来推断是否须要运行shuffle操作.
假设是默认的hashPartitioner时,检查spark.default.parallelism配置是否有配置,假设有分区个数按这个配置来设置,否则使用当前进行此groupByKey操作的rdd的partitions来设置.
def groupByKey(partitioner: Partitioner): RDD[(K, Iterable[V])]
= self.withScope {
这里同样与reduceByKey的操作一样,通过调用combineByKeyWithClassTag的函数来进行处理,
不同的是,withClassTag的合并操作是一个CompactBuffer[V]类型.
这里生成aggregator实例须要的三个函数时,
createCombiner:假设key眼下还有值时,依据当前传入的key-value中的value生成一个CompactBuffer的实例,并存储到key相应的位置,
mergeValue:传入一个key-value时,假设key相应的CompactBuffer已经存在,把这个value加入到这个buffer中.
mergeCombiners:这个主要在shuffle结束时,把key同样的多个buffer进行合并.
须要注意的是,在运行groupByKey的操作时,会把mapSideCombine设置为false,表示不运行map端的聚合.
为什么groupByKey不做mapSideCombine的操作呢,由于在groupByKey的操作中,会先依据同样的key,把value存储到一个buffer中,这个地方并不会设计到map端combine的操作会降低多少的网络传输的开效,假设做map combine操作时,反而添加了map端writer的内存使用.
// groupByKey shouldn't use map side combine because map side combine does not
// reduce the amount of data shuffled and requires all map side data be inserted
// into a hash table, leading to more objects in the old gen.
val createCombiner = (v: V) => CompactBuffer(v)
val mergeValue = (buf: CompactBuffer[V], v: V) => buf += v
val mergeCombiners = (c1: CompactBuffer[V], c2: CompactBuffer[V]) => c1 ++= c2
val bufs = combineByKeyWithClassTag[CompactBuffer[V]](
createCombiner, mergeValue, mergeCombiners, partitioner, mapSideCombine = false)
bufs.asInstanceOf[RDD[(K, Iterable[V])]]
}
在combineByKeyWithClassTag的操作函数中的处理:
mapSideCombine的传入參数为false.
这个地方,依据上面的三个函数,生成Aggregator,这里的K,V,C分别代表key的类型,value的类型,C在groupByKey的操作中是一个CompactBuffer[V]的类型
val aggregator = new Aggregator[K, V, C](
self.context.clean(createCombiner),
self.context.clean(mergeValue),
self.context.clean(mergeCombiners))
这里主要是看看当前的partitioner是否与当前运行这个操作的rdd的partitioner实例同样.同样就不在须要运行shuffle操作,否则就须要运行shuffle操作,生成新的ShuffledRDD实例.
if (self.partitioner == Some(partitioner)) {
self.mapPartitions(iter => {
val context = TaskContext.get()
new InterruptibleIterator(context, aggregator.combineValuesByKey(iter,
context))
}, preservesPartitioning = true)
} else {
new ShuffledRDD[K, V, C](self, partitioner)
.setSerializer(serializer)
.setAggregator(aggregator)
.setMapSideCombine(mapSideCombine)
}
在Aggregator的操作中,假设mapSideCombine的參数为false时,通过Aggregator中的combineValuesByKey函数运行数据的合并操作.假设mapSideCombine的參数为true时,通过Aggregator中的combineCombinersByKey函数运行数据的合并操作(仅仅运行第三个函数,由于map端已经把结果合并成了C的类型).
在Aggregator的合并操作中,通过ExternalAppendOnlyMap实例来进行数据的合并(insertAll).这个实例会最大可能的使用内存,假设内存实在不够用时,考虑对内存中的数据进行spill到磁盘的操作.
spark transform系列__groupByKey的更多相关文章
- spark transform系列__sortByKey
该函数主要功能:通过指定的排序规则与进行排序操作的分区个数,对当前的RDD中的数据集按KEY进行排序,并生成一个SHUFFLEdrdd的实例,这个过程会运行shuffle操作,在运行排序操作前,sor ...
- Spark JDBC系列--取数的四种方式
Spark JDBC系列--取数的四种方式 一.单分区模式 二.指定Long型column字段的分区模式 三.高自由度的分区模式 四.自定义option参数模式 五.JDBC To Other Dat ...
- rxjs5.X系列 —— transform系列 api 笔记
欢迎指导与讨论:) 前言 本文是笔者翻译 RxJS 5.X 官网各类operation操作系列的的第一篇 -- transform转换.如有错漏,希望大家指出提醒O(∩_∩)O.更详细的资料尽在rxj ...
- spark学习系列
转自: http://www.cnblogs.com/magj2006/p/4316264.html spark 系列文章汇总 源码导读 spark 源码导读1 从spark启动脚本开始 spark ...
- (转)Spark 算子系列文章
http://lxw1234.com/archives/2015/07/363.htm Spark算子:RDD基本转换操作(1)–map.flagMap.distinct Spark算子:RDD创建操 ...
- spark transform操作卡死,请先对rdd进行action操作
这两天一直在写spark程序,遇到了一个奇怪的问题. 问题简单描述如下,有两个RDD,设为rdd_a,rdd_b,当将这两个rdd合并的时候,spark会在运行中卡死. 解决方式也是奇葩. 只要在合并 ...
- Spark机器学习系列之13: 支持向量机SVM
Spark 优缺点分析 以下翻译自Scikit. The advantages of support vector machines are: (1)Effective in high dimensi ...
- Spark 概念学习系列之从物理执行的角度透视spark Job(十七)
本博文主要内容: 1.再次思考pipeline 2.窄依赖物理执行内幕 3.宽依赖物理执行内幕 4.Job提交流程 一:再次思考pipeline 即使采用pipeline的方式,函数f对依赖的RDD ...
- Spark 概念学习系列之从spark架构中透视job(十六)
本博文的主要内容如下: 1.通过案例观察Spark架构 2.手动绘制Spark内部架构 3.Spark Job的逻辑视图解析 4.Spark Job的物理视图解析 1.通过案例观察Spark架构 s ...
随机推荐
- 1112 KGold
给出N个人在0时刻的财富值M[i](所有人在0时刻的财富互不相等),以及财富增长速度S[i],随着时间的推移,某些人的财富值会超越另外一些人.如果时间足够长,对于财富增长最快的人来说,他的财富将超越所 ...
- php>$_SERVER服务的一些常用命令
$_SERVER['REMOTE_ADDR'] //当前用户 IP . $_SERVER['REMOTE_HOST'] //当前用户主机名 $_SERVER['REQUEST_URI'] //UR ...
- tf.slice()解释
转载:https://www.jianshu.com/p/71e6ef6c121b def slice(input_, begin, size, name=None): 其中“input_”是你输入的 ...
- java jar打包命令使用
用法:jar {ctxu}[vfm0Mi] [jar-文件] [manifest-文件] [-C 目录] 文件名 ... 选项: -c 创建新的存档 -t 列出存档内容的列表 -x 展开存档中的命名的 ...
- PostGIS解析Geometry几何对象
一.Geometry转WKT select st_astext(geom) where tableName; 二.PostGIS常用函数 wkt转geometry st_geomfromtext(wk ...
- Java基础学习总结(2)——接口
一.接口的概念 JAVA是只支持单继承的,但现实之中存在多重继承这种现象,如"金丝猴是一种动物",金丝猴从动物这个类继承,同时"金丝猴是一种值钱的东西",金丝猴 ...
- 洛谷 P3671 [USACO17OPEN]Where's Bessie? 贝西在哪呢
P3671 [USACO17OPEN]Where's Bessie? 贝西在哪呢 题目背景 农夫John正在测试一个他新发明的全自动寻找奶牛无人机,它能够照一张农场的图片然后自动找出奶牛的位置. 不幸 ...
- hadoop-10-创建yum资源库
hadoop-10-创建yum资源库 1,在/etc/yum.repos.d/下面创建 ambari.repo HDP.repo HDP-UTILS.repo 三个文件: [root@server ...
- 数学之路-python计算实战(18)-机器视觉-滤波去噪(双边滤波与高斯滤波 )
高斯滤波就是对整幅图像进行加权平均的过程.每个像素点的值,都由其本身和邻域内的其它像素值经过加权平均后得到.高斯滤波的详细操作是:用一个模板(或称卷积.掩模)扫描图像中的每个像素.用模板确定的邻域内像 ...
- C语言之文件操作04——输入矩阵a,b,求乘积c,并打印a,b,c到文件
//文件与数组结合 /* ================================================================= 题目:输入矩阵a,b,求乘积c,并打印a, ...